Water movement in swelling soils conforms with material continuity. This invariably justifies the differences in the gravitational potential energy during expansion and the anisotropic stresses that press the soil but allow for vertical movement. Under fluid conditions, vane efficiency exhibited by macropores is lowered by swelling of the clay, and a poorly drained soil results in surface saturation. The type of water applied to soil material tends to have an impact on the positioning of cracks in swelling clays, and thus, cracks can remain pathways for preferential flow much after they are covered at the soil surface. Over time, chemicals and chemical compounds have been utilized to further enhance the engineering properties of such soils. However, environmentally friendly biodegradable biological stabilizers are taking the place of conventional stabilizers, most especially lime and cement. Additionally, biochar amendment, which is ecofriendly, has also been found to lower the swelling index capability of expansive clay soil. Despite the dangers associated with swelling clay, it has found extensive use as adsorbents, carriers in drug delivery systems, and the building of a storage tank for the disposal of radioactive materials. In addition, swelling clays have found significant usage in the production of controlled-release fertilizers (CRFs) formulations. Hence this paper emphasizes the environmental impact of building large structures and road construction on swelling clay soils, highlights recent progress in the inhibition and stabilization of swelling soils to sustain the environment, and enumerates the economic importance associated with swelling clay soils.
References
N. Kumari and C. Mohan, Basics of clay minerals and their characteristic properties. Clay Clay Miner, 24(1), 2021.
F. L. Pellet, M. Keshavarz, and M. Boulon, Influence of humidity conditions on shear strength of clay rock discontinuities. Engineering Geology, 157, pp.33-38, 2013. Doi.org/10.1016/j.enggeo.2013.02.002
M. Fernandes, A. Denis, R. Fabre, J. F. Lataste, and M. Chrétien, In situ study of the shrinkage-swelling of a clay soil over several cycles of drought-rewetting. Engineering Geology, 192, pp.63-75, 2015. Doi.org/10.1016/j.enggeo.2015.03.017
G. Xie, Y. Xiao, M. Deng, Y. Luo, and P. Luo, Low molecular weight branched polyamine as a clay swelling inhibitor and its inhibition mechanism: experiment and density functional theory simulation. Energy & Fuels, 34(2), 2169-2177, 2020. Doi.org/10.1021/acs.energyfuels.9b04003
S. Guggenheim, and R. T. Martin, Definition of clay and clay mineral: joint report of the AIPEA nomenclature and CMS nomenclature committees. Clays and clay minerals, 43(2), pp.255-256, 1995. Doi.org/10.1346/CCMN.1995.0430213
G. W. Gee and D. Or, 2.4 Particle-size analysis. Methods of soil analysis. Part, 4(598), pp.255-293, 2002. Doi.org/10.2136/sssabookser5.4.c12
M. C. Floody, B. K. G., Theng, P. Reyes, and M. L. Mora, Natural nanoclays: applications and future trends–a Chilean perspective. Clay Minerals, 44(2), pp.161-176, 2009. Doi.org/10.1180/claymin.2009.044.2.161
D. E.Jones Jr, and W. G. Holtz, Expansive soils-the hidden disaster. Civil engineering, 43(8), 1973.
C. D. Alonso-Martirena, F. E. Sánchez, and J. Á. R. Masferrer, Risk Analysis for Swelling Clays to Buildings is South Madrid, Spain. In Engineering Geology for Society and Territory-Volume 5 (pp. 1243-1246). Springer, Cham. 2015. Doi.org/10.1007/978-3-319-09048-1_237
L. Jones, V. Banks and I. Jefferson, Swelling and shrinking soils. Geological Society, London, Engineering Geology Special Publications, 29(1), pp.223-242, 2020. Doi.org/10.1144/EGSP29.8
A. U. R. Tariq and D. S. Durnford, Analytical volume change model for swelling clay soils. Soil Science Society of America Journal, 57(5), 1183-1187, 1993. Doi.org/10.2136/sssaj1993.03615995005700050003x
M. Julina, and T. Thyagaraj, Determination of volumetric shrinkage of an expansive soil using digital camera images. International Journal of Geotechnical Engineering, 15(5), pp.624-632, 2021. Doi.org/10.1080/19386362.2018.1460961
A. G. Sharanya, H. Mudavath and T. Thyagaraj, Review of methods for predicting soil volume change induced by shrinkage. Innovative Infrastructure Solutions, 6(2), pp.1-16, 2021. Doi.org/10.1007/s41062-021-00485-1
I. Bérend, J. M. Cases, M. François, J. P. Uriot, L. Michot, I. A. Masion and F. Thomas, Mechanism of adsorption and desorption of water vapor by homoionic montmorillonites: 2. The Li+, Na+, K+, Rb+, and Cs+-exchanged Forms. Clays and Clay Minerals, 43(3) 324-336, 1995. Doi.org/10.1346/CCMN.1995.0430307
D. A. Young and D. E. Smith, Simulations of clay mineral swelling and hydration: Dependence upon interlayer ion size and charge. The Journal of Physical Chemistry B, 104(39), 9163-9170, 2000. Doi.org/10.1021/jp000146k
E. Rinnert, C. Carteret, B. Humbert, G. Fragneto-Cusani, J.D. Ramsay, A. Delville, J. L. Robert, I. Bihannic, M. Pelletier and L. J. Michot, Hydration of a synthetic clay with tetrahedral charges: a multidisciplinary experimental and numerical study. The Journal of Physical Chemistry B, 109(49), pp.23745-23759, 2005. Doi.org/10.1021/jp050957u
D. A. Laird, C. Shang, and M. L. Thompson, Hysteresis in crystalline swelling of smectites. Journal of Colloid and Interface Science, 171(1), pp.240-245, 1995. Doi.org/10.1006/jcis.1995.1173
S. M. Rao, T. Thyagaraj and P. Rao, Crystalline and osmotic swelling of an expansive clay inundated with sodium chloride solutions. Geotechnical and Geological Engineering, 31(4), pp.1399-1404, 2013. Doi.org/10.1007/s10706-013-9629-3
M. Daab, N. J. Eichstaedt, C. Habel, S. Rosenfeldt, H. Kalo, H. Schießling, S. Förster, S. and J. Breu, Onset of osmotic swelling in highly charged clay minerals. Langmuir, 34(28), pp.8215-8222, 2018. DOI: 10.1021/acs.langmuir.8b00492.
F. T. Madsen and M. Müller-Vonmoos, The swelling behaviour of clays. Applied Clay Science, 4(2), pp.143-156, 1989. Doi.org/10.1016/0169-1317(89)90005-7
J. D. Nelson and D. J. Miller, Expansive soils: problems and practice in foundation and pavement engineering. Wiley, New York, 1992.
A. W. Skempton, The colloidal activity of clays. Selected papers on soil mechanics, pp.106-118, 1953.
M. Mokhtari, and M. Dehghani, Swell-shrink behavior of expansive soils, damage and control. Electronic Journal of Geotechnical Engineering, 17, pp.2673-2682, 2012.
D. R. Snethen,. An evaluation of methodology for prediction and minimization of detrimental volume change of expansive soils in highway subgrades, 1979.
M. F. Hochella, D. W. Mogk, J. Ranville, I. C. Allen, G. W. Luther, L. C. Marr, B. P. McGrail, M. Murayama, N. P. Qafoku, K. M. Rosso, and N. Sahai, Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science, 363(6434), 2019. Doi.org/10.1126/science.aau8299
I. C. Bourg, and J. B. Ajo-Franklin, Clay, water, and salt: Controls on the permeability of fine-grained sedimentary rocks. Accounts of chemical research, 50(9), pp.2067-2074, 2017. Doi.org/10.1021/acs.accounts.7b00261
L. Charlet, P. Alt-Epping, P. Wersin, and B. Gilbert, Diffusive transport and reaction in clay rocks: A storage (nuclear waste, CO2, H2), energy (shale gas) and water quality issue. Advances in Water Resources, 106, pp.39-59, 2017. Doi.org/10.1016/j.advwatres.2017.03.019
B. K. Theng, and G. Yuan, G. Nanoparticles in the soil environment. Elements, 4(6), 395-399, 2008. Doi.org/10.2113/gselements.4.6.395
P. Sellin, and O. X. Leupin, The use of clay as an engineered barrier in radioactive-waste management–a review. Clays and Clay Minerals, 61(6), pp.477-498, 2013. Doi.org/10.1346/CCMN.2013.0610601
H. N. Faisal, K. S. Katti, and D. R. Katti, Molecular mechanics of the swelling clay tactoid under compression, tension and shear. Applied Clay Science, 200, p.105908, 2021. Doi.org/10.1016/j.clay.2020.105908
G. E. Christidis, A. E. Blum, and D.D. Eberl, Influence of layer charge and charge distribution of smectites on the flow behaviour and swelling of bentonites. Applied Clay Science, 34(1-4), pp.125-138, 2006. Doi.org/10.1016/j.clay.2006.05.008
D. A. Laird, Influence of layer charge on swelling of smectites. Applied clay science, 34(1-4), pp.74-87, 2006. Doi.org/10.1016/j.clay.2006.01.009
Bell, F.G., & Culshaw, M.G. (2001). Problems soils: a review from a British perspective. In Problematic Soils: Proceedings of the Symposium held at the Nottingham Trent University on 8 November 2001 (pp. 1-35). Thomas Telford Publishing.
J. A. Smethurst, D. Clarke, and W. Powrie, Seasonal changes in pore water pressure in a grass-covered cut slope in London Clay. In Stiff Sedimentary Clays: Genesis and Engineering Behaviour: Géotechnique Symposium in Print 2007 (pp. 337-351), 2011. Thomas Telford Ltd. Doi.org/10.1680/ssc.41080.0029
B. Fatahi, H. Khabbaz, and B. Indraratna, Modelling of unsaturated ground behavior influenced by vegetation transpiration. Geomechanics and Geoengineering, 9(3), pp.187-207, 2014. Doi.org/10.1080/17486025.2014.880520
U. Pathirage, B. Indraratna, M. Pallewattha, M., and A. Heitor, A theoretical model for total suction effects by tree roots. Environmental Geotechnics, 6(6), pp.353-360, 2017. Doi.org/10.1680/jenge.15.00065
R. Saadeldin, Y. Hu, and A. Henni, Soil-pipe-atmosphere interaction under field conditions. Bulletin of Engineering Geology and the Environment, 80(6), pp.4803-4819, 2021. Doi.org/10.1007/s10064-020-02002-7
D. Clarke and J. A. Smethurst, Effects of climate change on cycles of wetting and drying in engineered clay slopes in England. Quarterly Journal of Engineering Geology and Hydrogeology, 43(4), pp.473-486, 2010.
K. M. Briggs, F. A. Loveridge and S. Glendinning, Failures in transport infrastructure embankments. Engineering Geology, 219, pp.107-117, 2017. Doi.org/10.1016/j.enggeo.2016.07.016
A. A. Basma, Estimating uplift of foundations due to expansion: a case history. Geotechnical Engineering 22, 217–231, 1991.
N. Y. Osman, The development of a predictive damage condition model of light structures on expansive soils using hybrid artificial intelligence techniques. Swinburne University of Technology, Faculty of Engineering and Industrial Sciences, 2007.
E. Sebastián, G. Cultrone, D. Benavente, L. L. Fernandez, K. Elert, and C. Rodriguez-Navarro, Swelling damage in clay-rich sandstones used in the church of San Mateo in Tarifa (Spain). Journal of cultural heritage, 9(1), pp.66-76, 2008. Doi.org/10.1016/j.culher.2007.09.002
G. Xeidakis, P. Koudoumakis, and A. Tsirambides, Road construction on swelling soils: the case of Strymi Soils, Rhodope, Thrace, Northern Greece. Bulletin of engineering geology and the environment, 63, 93-101, 2004. Doi.org/10.1007/s10064-003-0214-5
S. S. Ray and S. Chapter, An overview of pure and organically modified clays. In: Clay-containing polymer nanocomposites. Elsevier, Amsterdam, pp 1–24, 2013. Doi.org/10.1016/B978-0-444-59437-2.00001-6
D. R. Snethen, Influence of local tree species on shrink/swell behavior of Permian clays in central Oklahoma. In Expansive Clay Soils and Vegetative Influence on Shallow Foundations (pp. 158-171), 2001. Doi.org/10.1061/40592(270)9
X. Zhang, Consolidation theories for saturated-unsaturated soils and numerical simulation of residential buildings on expansive soils. Texas A&M University, 2004.
A. M. A. N. Karunarathne, M. Fardipour, E. F. Gad, P. Rajeev, M. M. Disfani, S. Sivanerupan, J. L. Wilson, Modelling of climate induced moisture variations and subsequent ground movements in expansive soils. Geotechnical and Geological Engineering, 36(4), pp.2455-2477, 2018. Doi.org/10.1007/s10706-018-0476-0
M. Sharifipour, A. Nakhaee and P. Pourafshary, Model development of permeability impairment due to clay swelling in porous media using micromodels. Journal of Petroleum Science and Engineering, 175, pp.728-742, 2019. Doi.org/10.1016/j.petrol.2018.12.082
L. Zhu, W. Shen, J. Shao, J. and M. He, Insight of molecular simulation to better assess deformation and failure of clay-rich rocks in compression and extension. International Journal of Rock Mechanics and Mining Sciences, 138, 104589, 2021. Doi.org/10.1016/j.ijrmms.2020.104589
H. B. Seed, R. J. Woodward, and R. Lundgren, Prediction of swelling potential for compacted clays. Transactions of the American Society of Civil Engineers, 128(1), pp.1443-1477, 1963.
B. Zamin, H. Nasir, K. Mehmood, Q. Iqbal, A. Farooq, and M. Tufail, An experimental study on the geotechnical, mineralogical, and swelling behavior of KPK expansive soils. Advances in civil engineering, 2021(1), p.8493091, 2021. Doi.org/10.1155/2021/8493091
F. Uddin, Clays, nanoclays, and montmorillonite minerals. Metallurgical and Materials Transactions A, 39(12), pp.2804-2814. 2008. Doi.org/10.1007/s11661-008-9603-5
H. G. Dill, Residual clay deposits on basement rocks: The impact of climate and the geological setting on supergene argillitization in the Bohemian Massif (Central Europe) and across the globe. Earth-Science Reviews, 165, pp.1-58, 2017. Doi.org/10.1016/j.earscirev.2016.12.004
E. J. Oziegbe, V. O. Olarewaju, and O. O. Ocan, Characterization, and utilization of clays from Origo and Awo Southwestern Nigeria, Malaysian J. Geosci., 3(2), 52–58, 2019. Doi.org/10.26480/mjg.02.2019.52.58
S. Hillier, Erosion, sedimentation and sedimentary origin of clays. In Origin and mineralogy of clays (pp. 162-219). Springer, Berlin, Heidelberg, 1995. Doi.org/10.1007/978-3-662-12648-6_4
H. Chamley, Clay sedimentology. Springer Science & Business Media, 2013.
A. Inoue, Formation of clay minerals in hydrothermal environments. In Origin and mineralogy of clays (pp. 268-329). Springer, Berlin, Heidelberg. 1995. Doi.org/10.1007/978-3-662-12648-6_7
A. Mas, D. Guisseau, P. P. Mas, D. Beaufort, A. Genter, B. Sanjuan, and J. P. Girard, Clay minerals related to the hydrothermal activity of the Bouillante geothermal field (Guadeloupe). Journal of Volcanology and Geothermal research, 158(3-4), pp.380-400, 2006. Doi.org/10.1016/j.jvolgeores.2006.07.010
R. Gholami, H. Elochukwu, N. Fakhari and M. Sarmadivaleh, A review on borehole instability in active shale formations: Interactions, mechanisms and inhibitors. Earth-Science Reviews, 177, pp.2-13, 2018. Doi.org/10.1016/j.earscirev.2017.11.002
S. Li, H. He, Q. Tao, J. Zhu, W. Tan, S. Ji, Y. Yang, and C. Zhang, Kaolinization of 2:1 type clay minerals with different swelling properties. American Mineralogist: Journal of Earth and Planetary Materials, 105(5), pp.687-696, 2020. Doi.org/10.2138/am-2020-7339
D. R. Snethen, F. C. Townsend, L. D. Johnson, D. M. Patrick, and P. J. Vedros, A review of engineering experiences with expansive soils in highway subgrades. Interim Report Army Engineer Waterways Experiment Station, 1975.
H. H. Murray, Structure and composition of the clay minerals and their physical and chemical properties. Developments in clay science, 2, pp.7-31, 2006. Doi.org/10.1016/S1572-4352(06)02002-2
T. Al-Ani, and O. Sarapää, Clay and clay mineralogy. Physical-chemical properties and industrial uses, pp.11-65, 2008.
U. Kuila, and M. Prasad, Specific surface area and pore‐size distribution in clays and shales. Geophysical Prospecting, 61(2-Rock Physics for Reservoir Exploration, Characterisation and Monitoring), pp.341-362, 2013. Doi.org/10.1111/1365-2478.12028
M. L. Whittaker, L. R. Comolli, B. Gilbert, and J. F. Banfield, Layer size polydispersity in hydrated montmorillonite creates multiscale porosity networks. Applied Clay Science, 190, 105548, 2020. Doi.org/10.1016/j.clay.2020.105548
T. Dabat, P. Porion, F. Hubert, E. Paineau, B. Dazas, B. Grégoire, E. Tertre, A, Delville, and E. Ferrage, Influence of preferred orientation of clay particles on the diffusion of water in kaolinite porous media at constant porosity. Applied Clay Science,184, p.105354, 2020. Doi.org/10.1016/j.clay.2019.105354
A. Asaad, F. Hubert, E. Ferrage, T. Dabat. E. Paineau, P. Porion, S. Savoye, B. Gregoire, B. Dazas, A. Delville, and E. Tertre, Role of interlayer porosity and particle organization in the diffusion of water in swelling clays. Applied Clay Science, 207, p.106089, 2021. Doi.org/10.1016/j.clay.2021.106089
G. Borchardt, Smectites. Minerals in soil environments, 1, pp.675-727, 1989. Doi.org/10.2136/sssabookser1.2ed.c14
R. L. Anderson, I. Ratcliffe, H. C. Greenwell, P. A. Williams, S. Cliffe P. V. Coveney, Clay swelling—a challenge in the oilfield. Earth-Science Reviews, 98(3-4), pp.201-216, 2010. Doi.org/10.1016/j.earscirev.2009.11.003
M. Robinson and K. J. Beven, The effect of mole drainage on the hydrological response of a swelling clay soil. Journal of Hydrology, 64(1-4), pp.205-223, 1983. Doi.org/10.1016/0022-1694(83)90069-0
T. Ma, C. Wei, C. Yao and Yi, Microstructural evolution of expansive clay during drying–wetting cycle. Acta Geotechnica, 15(8), 2020. Doi.org/10.1007/s11440-020-00938-4
J. Kodikara, S. L. Barbour and D.G. Fredlund, February. Changes in clay structure and behaviour due to wetting and drying. In Proceedings 8th Australia New Zealand conference on geomechanics: consolidating knowledge (p. 179). Barton, ACT: Australian Geomechanics Society, 1999.
Y. J. Cui, C. Loiseau and P. Delage,, March. Microstructure changes of a confined swelling soil due to suction controlled hydration. In Unsaturated soils: proceedings of the Third International Conference on Unsaturated Soils (pp. 10-13). UNSAT Recife, Brazil, 2002.
T. Thiebault, Raw and modified clays and clay minerals for the removal of pharmaceutical products from aqueous solutions: State of the art and future perspectives. Critical Reviews in Environmental Science and Technology, 50(14), 1451-1514, 2019. Doi.org/10.1080/10643389.2019.1663065
A.H. Alias, M. N. Norizan, F. A. Sabaruddin, M. R. M. Asyraf, M. N. F. Norrrahim, A. R. Ilyas, A. M. Kuzmin, M. Rayung, S. S, Shazleen, A. Nazrin and S. F. K. Sherwani, Hybridization of MMT/lignocellulosic fiber reinforced polymer nanocomposites for structural applications: a review. Coatings, 11(11), p.1355, 2021. Doi.org/10.3390/coatings11111355
D. Smiles and P. A. Raats, Hydrology of swelling clay soils. Encyclopedia of Hydrological Sciences, 2006. Doi.org/10.1002/0470848944.hsa071
C. M. Heppell, T. P. Burt and R. J. Williams, Variations in the hydrology of an underdrained clay hillslope. Journal of Hydrology, 227(1-4), pp.236-256, 2000. Doi.org/10.1016/S0022-1694(99)00189-4
J. Ruedrich, T. Bartelsen, R. Dohrmann, and S. Siegesmund, Moisture expansion as a deterioration factor for sandstone used in buildings. Environmental Earth Sciences, 63, pp.1545-1564, 2011. Doi.org/10.1007/s12665-010-0767-0
D. Tessier, Behaviour and microstructure of clay minerals. In Soil colloids and their associations in aggregates (pp. 387-415). Boston, MA: Springer US, 1990. Doi.org/10.1007/978-1-4899-2611-1_14
D. R. Katti, K. B. Thapa, H. N. Faisal and K. Katti, Molecular Origin of Compressibility and Shear Strength of Swelling Clays. In International Conference of the International Association for Computer Methods and Advances in Geomechanics (pp. 641-647). Springer, Cham., 2021. Doi.org/10.1007/978-3-030-64514-4_66
C. T. Johnston, G. Sposito, and C. Erickson, Vibrational probe studies of water interactions with montmorillonite. Clays and Clay Minerals, 40(6), 722-730, 1992. Doi.org/10.1346/CCMN.1992.0400611
S. Karaborni, B. Smit, W. Heidug, J. Urai and E. Van Oort, The swelling of clays: molecular simulations of the hydration of montmorillonite. Science, 271(5252), pp.1102-1104, 1996. Doi.org/10.1126/science.271.5252.1102
C. Lucian, Geotechnical aspects of buildings on expansive soils in Kibaha, Tanzania (Doctoral dissertation, KTH), 2008.
E. Ferrage, Investigation of the interlayer organization of water and ions in smectite from the combined use of diffraction experiments and molecular simulations. A review of methodology, applications, and perspectives. Clays and Clay Minerals, 64(4), 348-373, 2016. Doi.org/10.1346/CCMN.2016.0640401
B. Chen, J. R. Evans, H. C. Greenwell, P. Boulet, P. V. Coveney, A. A. Bowden, and A. Whiting, A critical appraisal of polymer–clay nanocomposites. Chemical Society Reviews, 37(3), 568-594, 2008. Doi.org/10.1039/B702653F
V. Y. Chertkov and I. Ravina, Modeling the crack network of swelling clay soils. Soil Science Society of America Journal, 62(5), pp.1162-1171, 1998. Doi.org/10.2136/sssaj1998.03615995006200050002x
C. S. Tang, C. Zhu, T. Leng, B. Shi, Q. Cheng and H. Zeng, Three-dimensional characterization of desiccation cracking behavior of compacted clayey soil using X-ray computed tomography. Engineering geology, 255, 1-10, 2019. Doi.org/10.1016/j.enggeo.2019.04.014
V. Y. Chertkov and I. Ravina, Networks originating from the multiple cracking of different scales in rocks and swelling soils. International journal of fracture, 128(1), pp.263-270, 2004. Doi.org/10.1023/B:FRAC.0000040989.82613.36
V. Y. Chertkov and I. Ravina, Tortuosity of crack networks in swelling clay soils. Soil Science Society of America Journal, 63(6), pp.1523-1530, 1999. Doi.org/10.2136/sssaj1999.6361523x
C. S. Gourley, D. Newill, and H. D. Schreiner, Expansive soils: TRL’s research strategy. In Engineering Characteristics of Arid Soils (pp. 247-260), 2020. CRC Press.
H. Afrin, A review on different types soil stabilization techniques. International Journal of Transportation Engineering and Technology, 3(2), pp.19-24, 2017. Doi: 10.11648/j.ijtet.20170302.12
U. Zada, A. Jamal, M. Iqbal, S. M. Eldin, M. Almoshaogeh, S. R. Bekkouche and S. Almuaythir, Recent advances in expansive soil stabilization using admixtures: current challenges and opportunities. Case Studies in Construction Materials, 18, p.e01985, 2023. Doi.org/10.1016/j.cscm.2023.e01985
S. Gautam, L. R. Hoyos, S. He, S. Prabakar, and X. Yu, Chemical treatment of a highly expansive clay using a liquid ionic soil stabilizer. Geotechnical and Geological Engineering, 38, pp.4981-4993, 2020. Doi.org/10.1007/s10706-020-01342-1
M. Salimi and A. Ghorbani, Mechanical and compressibility characteristics of a soft clay stabilized by slag-based mixtures and geopolymers. Applied Clay Science, 184, p.105390, 2020. Doi.org/10.1016/j.clay.2019.105390
W.A.M. Ogila, Effectiveness of fresh cement kiln dust as a soil stabilizer and stabilization mechanism of high swelling clays. Environmental Earth Sciences, 80(7), p.283, 2021. Doi.org/10.1007/s12665-021-09589-4
A. Smaida, B. Mekerta and M. K. Gueddouda, Physico-mechanical stabilization of a high swelling clay. Construction and Building Materials, 289, 123197, 2021. Doi.org/10.1016/j.conbuildmat.2021.123197
P. Jamsawang, B. Adulyamet, P. Voottipruex, P. Jongpradist, S. Likitlersuang and K. Tantayopin, The free swell potential of expansive clays stabilized with the shallow bottom ash mixing method. Engineering Geology, 315, p.107027, 2023. Doi.org/10.1016/j.enggeo.2023.107027
A. Abdullatif, I. A. Al-Hulail, E. Al-Mutawa, January. Robust clay stabilizer to control swelling in a rich swellable clay formation: A laboratory study. In International Petroleum Technology Conference (p. D022S166R003). IPTC., 2020. Doi.org/10.2523/IPTC-20305-MS
D. Barman and S. K. Dash, Stabilization of expansive soils using chemical additives: A review. Journal of Rock Mechanics and Geotechnical Engineering, 14(4), pp.1319-1342, 2022. Doi.org/10.1016/j.jrmge.2022.02.011
A. Almajed, H. Abbas, M. Arab, A. Alsabhan, W. Hamid and Y. Al-Salloum, Enzyme-Induced Carbonate Precipitation (EICP)-Based methods for ecofriendly stabilization of different types of natural sands. Journal of Cleaner Production, 274, p.122627, 2020. Doi.org/10.1016/j.jclepro.2020.122627
F. Pourebrahim and S. Y. Zolfegharifar, Stabilizers Effects Comprehensive Assessment on the Physical and Chemical Properties of Soft Clays. Shock and Vibration, 2022(1), p.5991132, 2022. Doi.org/10.1155/2022/5991132
D. Dorairaj N. Osman, Present practices and emerging opportunities in bioengineering for slope stabilization in Malaysia: An overview. PeerJ, 9, p.e10477, 2021.
R. Burman and L. O. Pochop, Evaporation, evapotranspiration and climatic data. Developments in atmospheric science, 22, 1994.
A. D. Wilson, and D. G. Lester, Trench inserts as long-term barriers to root transmission for control of oak wilt. Plant disease, 86(10), 1067-1074, 2002. Doi.org/10.1094/PDIS.2002.86.10.1067
S. Vorwerk, D. Cameron, and G. Keppel, Clay soil in suburban environments: Movement and stabilization through vegetation. In Ground improvement case histories (pp. 655-682). Butterworth-Heinemann, 2015. Doi.org/10.1016/B978-0-08-100191-2.00022-8
A. Jotisankasa, and T. Sirirattanachat, Effects of grass roots on soil-water retention curve and permeability function. Canadian Geotechnical Journal, 54(11), pp.1612-1622, 2017. Doi.org/10.1139/cgj-2016-0281
H. Assadollahi, and H. Nowamooz, Long-term analysis of the shrinkage and swelling of clayey soils in a climate change context by numerical modelling and field monitoring. Computers and Geotechnics, 127, p.103763, 2020. Doi.org/10.1016/j.compgeo.2020.103763
W. Potter and D. A. and Cameron, D. A. (2005). Potential Remediation of Rail Track Foundations in Poorly Drained Clay Sites with Native Vegetation. In Proceedings of the international conferences on the bearing capacity of roads, railways and airfields, 2020.
P. Pei, Y. Zhao, P. Ni and G. Mei, A protective measure for expansive soil slopes based on moisture content control. Engineering Geology, 269, p.105527, 2020. Doi.org/10.1016/j.enggeo.2020.105527
J. Kim, S. Jeong, S. Park and J Sharma, Influence of rainfall-induced wetting on the stability of slopes in weathered soils. Engineering Geology, 75(3-4), pp.251-262, 2004. Doi.org/10.1016/j.enggeo.2004.06.017
T. S. Hou, G. L. Xu, Y. J. Shen, Z. Z. Wu, N. N. Zhang and R.Wang, Formation mechanism and stability analysis of the Houba expansive soil landslide. Engineering Geology, 161, pp.34-43, 2013. Doi.org/10.1016/j.enggeo.2013.04.010
A. Lloret, M. V. Villar, M. Sanchez, A. Gens, X. Pintado and E. E. Alonso, Mechanical behaviour of heavily compacted bentonite under high suction changes. Géotechnique, 53(1), pp.27-40, 2003. Doi.org/10.1680/geot.2003.53.1.27
Q. Liu, G. Liu, C. Huang and H. Li, Soil physicochemical properties associated with quasi-circular vegetation patches in the Yellow River Delta, China. Geoderma, 337, pp.202-214, 2019. Doi.org/10.1016/j.geoderma.2018.09.021
J. Li, H. Chen, K. Guo, W. Li, X. Feng and X. Liu, Changes in soil properties induced by pioneer vegetation patches in coastal ecosystem. Catena, 204, p.105393. 2021a. Doi.org/10.1016/j.catena.2021.105393
F. Melinda, H. Rahardjo, K. K. Han and E. C. Leong, Shear strength of compacted soil under infiltration condition. Journal of Geotechnical and Geoenvironmental Engineering, 130(8), pp.807-817, 2004. Doi.org/10.1061/(ASCE)1090-0241(2004)130:8(807)
A. J. Puppala, K. Punthutaecha, K. and S. K. Vanapalli, Soil-water characteristic curves of stabilized expansive soils. Journal of Geotechnical and Geoenvironmental Engineering, 132(6), pp.736-751, 2006. Doi.org/10.1061/(ASCE)1090-0241(2006)132:6(736)
J. H. Li and L. M. Zhang, Study of desiccation crack initiation and development at ground surface. Engineering Geology, 123(4), pp.347-358, 2011. Doi.org/10.1016/j.enggeo.2011.09.015
H. Adem and S. Vanapalli, Soil–environment interactions modelling for expansive soils. Environmental Geotechnics, 3(3), pp.178-187, 2014. Doi.org/10.1680/envgeo.13.00089
W. G. Holtz, The influence of vegetation on the swelling and shrinking of clays in the United States of America. Géotechnique, 33(2), pp.159-163, 1983. Doi.org/10.1680/geot.1983.33.2.159
B. G. Richards, P. Peter and W. W. Emerson, The effects of vegetation on the swelling and shrinking of soils in Australia. Geotechnique, 33(2), pp.127-139, 1983. Doi.org/10.1680/geot.1983.33.2.127
R. Driscoll, The influence of vegetation on the swelling and shrinking of clay soils in Britain. Geotechnique, 33(2), 93-105, 1983. Doi.org/10.1680/geot.1983.33.2.93
M. Lawson, Tree related subsidence of low rise buildings and the management options. Arboricultural Journal, 27(3), pp.191-219, 2004. Doi.org/10.1080/03071375.2004.9747379
S. Jian, C. Zhao, S. Fang and K. Yu, Effects of different vegetation restoration on soil water storage and water balance in the Chinese Loess Plateau. Agricultural and Forest Meteorology, 206, pp.85-96, 2015. Doi.org/10.1016/j.agrformet.2015.03.009
J. J. Hamilton, Foundations on Swelling or Shrinking Sub-softs. Canadian Building Digest (CBD)- 184, 1-7, 1977.
J. T. Bryant, D. V. Morris, S. P. Sweeney, M. D. Gehrig and J. D. Mathis, Tree root influence on soil-structure interaction in expansive clay soils. In Expansive Clay Soils and Vegetative Influence on Shallow Foundations (pp. 110-131), 2001. Doi.org/10.1061/40592(270)7
W. Powrie and J. Smethurst, Climate and vegetation impacts on infrastructure cuttings and embankments. In Proceedings of the 8th International Congress on Environmental Geotechnics Volume 1: Towards a Sustainable Geoenvironment 8th (pp. 128-144). Springer Singapore, 2019. Doi.org/10.1007/978-981-13-2221-1_7
S. Glendinning, F. Loveridge, R. E. Starr-Keddle, M. F. Bransby and P. N. Hughes, Role of vegetation in sustainability of infrastructure slopes. In Proceedings of the Institution of Civil Engineers-Engineering Sustainability (Vol. 162, No. 2, pp. 101-110), 2009. Doi.org/10.1680/ensu.2009.162.2.101
S. M. Hejazi, M. Sheikhzadeh, S. M. Abtahi and A. Zadhoush, A simple review of soil reinforcement by using natural and synthetic fibers. Construction and building materials, 30, pp.100-116, 2012. Doi.org/10.1016/j.conbuildmat.2011.11.045
A. Gheris and A. Hamrouni, Treatment of an expansive soil using vegetable (DISS) fibre. Innovative Infrastructure Solutions, 5(1), pp.1-17, 2020.
B. Indraratna, B. Fatahi and H. Khabbaz, Numerical analysis of matric suction effects of tree roots. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 159(2), pp.77-90, 2006. Doi.org/10.1680/geng.2006.159.2.77
G. Stotzky and D. Pramer, Activity, ecology, and population dynamics of microorganisms in soil. CRC critical reviews in microbiology, 2(1), 59-137, 1972. Doi.org/10.3109/10408417209108383
J. S. Buyer, J. R. Teasdale, D. P. Roberts, I. A. Zasada and J. E. Maul, Factors affecting soil microbial community structure in tomato cropping systems. Soil Biology and Biochemistry, 42(5), pp.831-841, 2010. Doi.org/10.1016/j.soilbio.2010.01.020
Z. Liu, H. Wei, J. Zhang, M. Saleem, Y. He, J. Zhong and R. Ma, Seasonality regulates the effects of acid rain on microbial community in a subtropical agricultural soil of Southern China. Ecotoxicology and Environmental Safety, 224, p.112681, 2021. Doi.org/10.1016/j.ecoenv.2021.112681
H. Li, Y. Qiu, T. Yao, D. Han, Y. Gao, J. Zhang, Y. Ma, H. Zhang and X. Yang, Nutrients available in the soil regulate the changes of soil microbial community alongside degradation of alpine meadows in the northeast of the Qinghai-Tibet Plateau. Science of The Total Environment, p.148363, 2021. Doi.org/10.1016/j.scitotenv.2021.148363
J. Cuadros, Clay minerals interaction with microorganisms: a review. Clay Minerals, 52(2), pp.235-261, 2017. Doi.org/10.1180/claymin.2017.052.2.05
Y. Feng, Y. Hu, J. Wu, J. Chen, K. Yrjälä and W. Yu, Change in microbial communities, soil enzyme and metabolic activity in a Torreya grandis plantation in response to root rot disease. Forest Ecology and Management, 432, pp.932-941, 2019. Doi.org/10.1016/j.foreco.2018.10.028
W. Cao, R. Zhu, J. Gong, T. Yang, G. Zeng, B. Song, J. Li, S. Fang, M. Qin, L. Qin and Z. Chen, Evaluating the metabolic functional profiles of the microbial community and alfalfa (Medicago sativa) traits affected by the presence of carbon nanotubes and antimony in drained and waterlogged sediments. Journal of Hazardous Materials, 420, p.126593, 2021. Doi.org/10.1016/j.jhazmat.2021.126593
K. Pedersen, Exploration of deep intraterrestrial microbial life: current perspectives. FEMS microbiology letters, 185(1), pp.9-16, 2000. Doi.org/10.1111/j.1574-6968.2000.tb09033.x
S. Stroes-Gascoyne, C. J. Hamon and P. Maak, Limits to the use of highly compacted bentonite as a deterrent for microbiologically influenced corrosion in a nuclear fuel waste repository. Physics and Chemistry of the Earth, Parts A/B/C, 36(17-18), 1630-1638, 2011. Doi.org/10.1016/j.pce.2011.07.085
A. Bengtsson and K. Pedersen, Microbial sulphide-producing activity in water saturated Wyoming MX-80, Asha and Calcigel bentonites at wet densities from 1500 to 2000 kg m− 3. Applied Clay Science, 137, pp.203-212, 2017. Doi.org/10.1016/j.clay.2016.12.024
M. Lopez-Fernandez, N. Matschiavelli and M. L. Merroun, Bentonite geomicrobiology. The Microbiology of Nuclear Waste Disposal, pp.137-155, 2021. Doi.org/10.1016/B978-0-12-818695-4.00007-1
M. Fomina and I. Skorochod, Microbial interaction with clay minerals and its environmental and biotechnological implications. Minerals, 10(10), p.861, 2020. Doi.org/10.3390/min10100861
O. Oziegbe, E. J. Oziegbe and E. J. Ahuekwe, Environmental Significance of Microbe-Clay Interactions: A Mini-Review. In IOP Conference Series: Earth and Environmental Science, (Vol. 1428, No. 1, 012008). IOP Publishing, 2024. Doi:10.1088/1755-1315/1428/1/012008
G. M. Gadd, Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology, 156, 609–643, 2010. Doi.org/10.1099/mic.0.037143-0
G. L. Li, C. H. Zhou, S. Fiore, and W. H. Yu, Interactions between microorganisms and clay minerals: New insights and broader applications. Applied Clay Science, 177, pp.91-113, 2019. Doi.org/10.1016/j.clay.2019.04.025
M. Fomina and G. M. Gadd, Metal sorption by biomass of melanin‐producing fungi grown in clay‐containing medium. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 78(1), pp.23-34, 2003.
L. Zhang, G. M. Gadd and Z. Li, Microbial biomodification of clay minerals. Advances in Applied Microbiology, 114, 111-139, 2021. Doi.org/10.1016/bs.aambs.2020.07.002
W. P. Gates, J. W. Stucki and R. J. Kirkpatrick, Structural properties of reduced Upton montmorillonite. Physics and Chemistry of Minerals, 23(8), pp.535-541, 1996. Doi.org/10.1007/BF00242003
L. Pentráková, K. Su, M. Pentrák and J. W. Stucki, A review of microbial redox interactions with structural Fe in clay minerals. Clay Minerals, 48(3), pp.543-560, 2013. Doi.org/10.1180/claymin.2013.048.3.10
V. A. Drits and A. Manceau, A model for the mechanism of Fe3+ to Fe2+ reduction in dioctahedral smectites. Clays and Clay Minerals, 48(2), pp.185-195, 2000. Doi.org/10.1346/CCMN.2000.0480204
J. W. Stucki and J. E. Kostka, Microbial reduction of iron in smectite. Comptes Rendus Geoscience, 338(6-7), 468-475, 2006. Doi.org/10.1016/j.crte.2006.04.010
H. Dong, D. P. Jaisi, J. Kim and G. Zhang, Microbe-clay mineral interactions. American Mineralogist, 94(11-12), pp.1505-1519, 2009. Doi.org/10.2138/am.2009.3246
D. Liu, H. Dong, M. E. Bishop, J. Zhang, H. Wang, S. Xie, S. Wang, L. Huang and D. D. Eberl, Microbial reduction of structural iron in interstratified illite‐smectite minerals by a sulfate‐reducing bacterium. Geobiology, 10(2), pp.150-162, 2012. Doi.org/10.1111/j.1472-4669.2011.00307.x
J. Zhang, H. Dong, D. Liu, T. B. Fischer, S. Wang and L. Huang, Microbial reduction of Fe (III) in illite–smectite minerals by methanogen Methanosarcina mazei. Chemical Geology, 292, 35-44, 2012. Doi.org/10.1016/j.chemgeo.2011.11.003
E. Paget, L/ J. Monrozier and P. Simonet, Adsorption of DNA on clay minerals: protection against DNaseI and influence on gene transfer. FEMS Microbiology Letters, 97(1-2), pp.31-39, 1992. Doi.org/10.1111/j.1574-6968.1992.tb05435.x
O. V. Lotareva and A. A. Prozorov, Effect of the clay minerals montmorillonite and kaolinite on the genetic transformation of competent Bacillus subtilis cells. Microbiology, 69(5), pp.571-574, 2000. Doi.org/10.1007/BF02756810
M. O. Pereira, M. J. Vieira, and L. F. Melo, The effect of clay particles on the efficacy of a biocide. Water Science and Technology, 41(4-5), pp.61-64, 2000. Doi.org/10.2166/wst.2000.0426
G. Stotzky, Influence of soil mineral colloids on metabolic processes, growth, adhesion, and ecology of microbes and viruses. Interactions of soil minerals with natural organics and microbes, 17, 305-428, 1986. Doi.org/10.2136/sssaspecpub17.c10
B. Mueller, Experimental interactions between clay minerals and bacteria: a review. Pedosphere 25 (6), 799–810, 2015. Doi.org/10.1016/S1002-0160(15)30061-8
Y. Zou, Y. Hu, Z. Shen, L. Yao, D. Tang, S. Zhang, S. Wang, B. Hu, G Zhao and X. Wang, Application of aluminosilicate clay mineral-based composites in photocatalysis. Journal of Environmental Sciences, 115, pp.190-214, 2022. Doi.org/10.1016/j.jes.2021.07.015
B. Biswas, B. Sarkar, S. McClure and R. Naidu, Modified osmium tracer technique enables precise microscopic delineation of hydrocarbon-degrading bacteria in clay aggregates. Environmental Technology & Innovation, 7, pp.12-20, 2017. Doi.org/10.1016/j.eti.2016.11.002
D. Biesgen, K. Frindte, S. Maarastawi and C. Knief, Clay content modulates differences in bacterial community structure in soil aggregates of different size. Geoderma, 376, p.11454, 2020. Doi.org/10.1016/j.geoderma.2020.114544
Q. Zhou, Y. Liu, T. Li, H. Zhao, D. S. Alessi, W. Liu and K. O. Konhauser, Cadmium adsorption to clay-microbe aggregates: implications for marine heavy metals cycling. Geochimica et Cosmochimica Acta, 290, 124-136, 2020. Doi.org/10.1016/j.gca.2020.09.002
A. Alimova, A. Katz, N. Steiner, E. Rudolph, H. Wei, J. C. Steiner, and P. Gottlieb, Bacteria-clay interaction: Structural changes in smectite induced during biofilm formation. Clay Clay Miner. 57: 205–212, 2009. Doi.org/10.1346/CCMN.2009.0570207
B. G. Hopkins, D. A. Horneck, R. G. Stevens, J. W. Ellsworth and D. M. Sullivan, Managing irrigation water quality for crop production in the Pacific Northwest, 2007.
C. Chenu, Influence of a fungal polysaccharide, scleroglucan, on clay microstructures. Soil Biology and Biochemistry, 21(2), pp.299-305, 1989. Doi.org/10.1016/0038-0717(89)90108-9
J. M. Tisdall, S. E. Smith and P. Rengasamy, Aggregation of soil by fungal hyphae. Soil Research, 35(1), 55-60, 1997. Doi.org/10.1071/S96065
S. A. Welch, W. W. Barker and J. F. Banfield, Microbial extracellular polysaccharides and plagioclase dissolution. Geochimica et Cosmochimica acta, 63(9), 1405-1419, 1999. Doi.org/10.1016/S0016-7037(99)00031-9
E. F. Leifheit, S. D. Veresoglou, A. Lehmann, E. K. Morris, and M. C. Rillig, Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—a meta-analysis. Plant and Soil, 374(1), pp.523-537, 2014. Doi.org/10.1007/s11104-013-1899-2
J. M. Dorioz, M. Robert and C. Chenu, The role of roots, fungi and bacteria on clay particle organization. An experimental approach. In Soil Structure/Soil Biota Interrelationships (pp. 179-194), 1993. Elsevier. Doi.org/10.1016/B978-0-444-81490-6.50019-4
G. M. Gadd, Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological research, 111(1), pp.3-49, 2007. Doi.org/10.1016/j.mycres.2006.12.001
S. Bonneville, M. M. Smits, A. Brown, J. Harrington, J. R. Leake, R. Brydson and L. G. Benning, Plant-driven fungal weathering: Early stages of mineral alteration at the nanometer scale. Geology, 37(7), pp.615-618, 2009. Doi.org/10.1130/G25699A.1
S. Bonneville, D. J. Morgan, A. Schmalenberger, A. Bray, A. Brown, S. A. Banwart and L. G. Benning, Tree-mycorrhiza symbiosis accelerate mineral weathering: Evidences from nanometer-scale elemental fluxes at the hypha-mineral interface. Geochim. Cosmochim. Acta 75, 6988–7005, 2011. Doi.org/10.1016/j.gca.2011.08.041
S. Shivhare and H. Mohanan, A review on subgrade soil stabilization using bio enzymes. Arabian Journal of Geosciences, 16(3), p.148, 2023. Doi.org/10.1007/s12517-023-11257-9
M. Arabani, and M. M. Shalchian, A review of the use of bio-based substances in soil stabilization. Environment, development and sustainability, 26(6), pp.13685-13737, 2024. Doi.org/10.1007/s10668-023-03241-w
V. Rajoria and S. Kaur, A review on stabilization of soil using bio-enzyme. International Journal of Research in Engineering and Technology, 3(1), pp.75-78, 2014.
Y. Li, X. Fang, C. Shen, W. Jiang, S. Huang and M. Guoliang, Review of Bio-Enzyme for Soil Improvement. Biogeotechnics, p.100143, 2024. Doi.org/10.1016/j.bgtech.2024.100143
H. X. Ren, C. P. Wen and X. Chen, Research on the Dynamic Elastic Modulus and Damping Ratio of Silty Soil Improved by Bioenzyme. Geotechnical and Geological Engineering, 42(2), pp.1505-1518, 2024. Doi.org/10.1007/s10706-023-02632-0
O. Purwaningsih, R. A. HI Wahid, and P. B. Pamungkas, An enhancement of phytochemical content in red ginger (zingiber officinale var. rubrum rhizome) using eco-enzyme. Applied Ecology & Environmental Research, 21(6), 2023. DOI10.15666/aeer/2106_54535461
S. P. Naik, T. R. Naik, M. I. Khan and A, M. C. Naik, Preparation of bio-enzyme and its effects on geotechnical characteristics of shedi soil. Int Res J Eng Technol, 7, pp.7645-7654, 2020.
A. Tiwari, J. K. Sharma and V. Garg, Stabilization of expansive soil using terrazyme. In Proceedings of the Indian Geotechnical Conference 2019: IGC-2019 Volume III (pp. 113-125). Springer Singapore, 2021. Doi.org/10.1007/978-981-33-6444-8_10
D. S. Aswar, M. N. Bajad and S. D. Ambadkar, Performance Evaluation of Terrazyme as Soil Stabilizer. Civil Engineering Infrastructures Journal, 56(2), pp.277-299, 2023. Doi.org/10.22059/ceij.2022.342784.1841
S. Marathe, and A. R. Shankar, Investigations on bio-enzyme stabilized pavement subgrades of lateritic, lithomargic and blended soils. International Journal of Pavement Research and Technology, 16(1), pp.15-25, 2023. Doi.org/10.1007/s42947-021-00107-0
N. Chandler, J. Palson and T. Burns, Capillary rise experiment to assess effectiveness of an enzyme soil stabilizer. Canadian Geotechnical Journal, 54(10), pp.1509-1517, 2017. Doi.org/10.1139/cgj-2016-0511
V. M. Ramdas, P. Mandree, M. Mgangira, S. Mukaratirwa, R. Lalloo and S. Ramchuran, Review of current and future bio-based stabilisation products (enzymatic and polymeric) for road construction materials. Transportation Geotechnics, 27, p.100458, 2021. Doi.org/10.1016/j.trgeo.2020.100458
G. P. Ganapathy, R. Gobinath, I. I. Akinwumi, S. Kovendiran, M. Thangaraj, N. Lokesh, S. Muhamed Anas, R. Arul Murugan, P. Yogeswaran and S. Hema, Bio-enzymatic stabilization of a soil having poor engineering properties. International Journal of Civil Engineering, 15, pp.401-409, 2017. Doi.org/10.1007/s40999-016-0056-8
A. I. Dhatrak and P. V. Kolhe, October. Application of eco-friendly and smart materials in geotechnical engineering for subgrade stabilization: a review. In IOP Conference Series: Earth and Environmental Science (Vol. 1084, No. 1, p. 012035). IOP Publishing, 2022. DOI 10.1088/1755-1315/1084/1/012035
V. Chaudhary, The Significance Of Agricultural Wastes In The Construction Sector. Journal of Survey in Fisheries Sciences, pp.4086-4104, 2023.
T. G. Yashas Gowda, S. B. Nagaraju, M, Puttegowda, A. Verma, S. M. Rangappa and S. Siengchin, Biopolymer-based composites: an eco-friendly alternative from agricultural waste biomass. Journal of Composites Science, 7, p.242, 2023. Doi.org/10.3390/jcs7060242
M. M. Shalchian and M. Arabani, A review of soil reinforcement with planetary fibers. Journal of Soil Science and Plant Nutrition, 22(4), pp.4496-4532, 2022. Doi.org/10.1007/s42729-022-01052-y
J. Guo, J. Yi, Z. Pei and D. Feng, Application of plant fibers in subgrade engineering: current situation and challenges. Intelligent Transportation Infrastructure, 2, p.liad025, 2023. Doi.org/10.1093/iti/liad025
M. S. Ahamed, P. Ravichandran and A. R. Krishnaraja, February. Natural fibers in concrete–A review. In IOP Conference Series: Materials Science and Engineering (Vol. 1055, No. 1, p. 012038). IOP Publishing, 2021, DOI 10.1088/1757-899X/1055/1/012038
J. Ahmad and Z. Zhou, Mechanical properties of natural as well as synthetic fiber reinforced concrete: a review. Construction and Building Materials, 333, p.127353, 2022. Doi.org/10.1016/j.conbuildmat.2022.127353
D. Thapliyal, S. Verma, P. Sen, R. Kumar, A. Thakur, A. K. Tiwari, D. Singh, G. D. Verros and R. K. Arya, Natural fibers composites: Origin, importance, consumption pattern, and challenges. Journal of Composites Science, 7(12), p.506, 2023. Doi.org/10.3390/jcs7120506
Y. G. Thyavihalli Girijappa, S. Mavinkere Rangappa, J. Parameswaranpillai and S Siengchin, Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review. Frontiers in materials, 6, p.226, 2019. Doi.org/10.3389/fmats.2019.00226
A. Lotfi, H. Li, D. V. Dao and G. Prusty, Natural fiber–reinforced composites: A review on material, manufacturing, and machinability. Journal of Thermoplastic Composite Materials, 34(2), pp.238-284, 2021. Doi.org/10.1177/0892705719844546
D. P. Ferreira, J. Cruz and R. Fangueiro, Surface modification of natural fibers in polymer composites. In Green composites for automotive applications (pp. 3-41). Woodhead Publishing, 2019. Doi.org/10.1016/B978-0-08-102177-4.00001-X
C. M. Suárez, P. R. Montejo and O. G. Junco, Effects of alkaline treatments on natural fibers. In Journal of Physics: Conference Series (Vol. 2046, No. 1, p. 012056). IOP Publishing, 2021. DOI 10.1088/1742-6596/2046/1/012056
B. A. Koohestani, A. K. Darban, P. Mokhtari, E. R. Yilmaz and E. S. Darezereshki, Comparison of different natural fiber treatments: a literature review. International Journal of Environmental Science and Technology, 16, pp.629-642, 2019. Doi.org/10.1007/s13762-018-1890-9
K. Y. Chan, L. Van, Zwieten, I. Meszaros, A. Downie, and S. Joseph, Agronomic values of greenwaste biochar as a soil amendment. Soil Research, 45(8), pp.629-634, 2007. Doi.org/10.1071/SR07109
A. GuhaRay, M. Guoxiong, A. Sarkar, S. Bordoloi, A. Garg and S. Pattanayak, Geotechnical and chemical characterization of expansive clayey soil amended by biochar derived from invasive weed species Prosopis juliflora. Innovative Infrastructure Solutions, 4(1), pp.1-10, 2019. Doi.org/10.1007/s41062-019-0231-2
B. A. Oni, O. Oziegbe and O. O. Olawole, Significance of biochar application to the environment and economy. Annals of Agricultural Sciences, 64(2), pp.222-236, 2019. Doi.org/10.1016/j.aoas.2019.12.006
H. Wang, A. Garg, S. Huang and G. Mei, Mechanism of compacted biochar-amended expansive clay subjected to drying–wetting cycles: Simultaneous investigation of hydraulic and mechanical properties. Acta Geophysica, 68, 737-749, 2020. Doi.org/10.1007/s11600-020-00423-2
Z. Pan, A. Garg, S. Huang and G. Mei, Swelling suppression mechanism of compacted expansive soil amended with animal and plant based biochar. Waste and Biomass Valorization, 12(5), pp.2653-2664, 2021. Doi.org/10.1007/s12649-020-01172-5
Y. Zhang, K. Gu, C. Tang, Z. Shen, G. R. Narala and B. Shi, Effects of biochar on the compression and swelling characteristics of clayey soils. International Journal of Geosynthetics and Ground Engineering, 6, 1-8, 2020. Doi.org/10.1007/s40891-020-00206-1
H. Wang, K. Zhang, L. Gan, J. Liu and G. Mei, Expansive soil-biochar-root-water-bacteria interaction: Investigation on crack development, water management and plant growth in green infrastructure. International Journal of Damage Mechanics, 30(4), 595-617, 2021. Doi.org/10.1177/1056789520974416
B. A. Akinyemi and A. Adesina, Recent advancements in the use of biochar for cementitious applications: A review. Journal of Building Engineering, 32, p.101705, 2020. Doi.org/10.1016/j.jobe.2020.101705
Y. Zhang, M. He, L. Wang, J. Yan, B. Ma, X. Zhu, Y. S. Ok, V. Mechtcherine and D. C. Tsang, Biochar as construction materials for achieving carbon neutrality. Biochar, 4(1), p.59, 2022. Doi.org/10.1007/s42773-022-00182-x
A. E. Ramaji, A review on the soil stabilization using low-cost methods. Journal of Applied Sciences Research, 8(4), pp.2193-2196, 2012.
M. K. Gueddouda, I. Goual, M. Lamara, A. Smaida and B. Mekarta, Chemical stabilization of expansive clays from Algeria. Global Journal of researches in engineering, 11(5), pp.1-7, 2011.
M. B. Hampton and T. B. Edil, Strength gain of organic ground with cement-type binders. In Soil improvement for big digs (pp. 135-148). ASCE, 1998.
J. K. Mitchell, Fundamentals of soil behavior, 2005.
A. A. Firoozi, C. Guney Olgun, A. A. Firoozi and M. S. Baghini, Fundamentals of soil stabilization. International Journal of Geo-Engineering, 8, pp.1-16, 2017. Doi.org/10.1186/s40703-017-0064-9
S. Saride, A. J. Puppala and S. R. Chikyala, Swell-shrink and strength behaviors of lime and cement stabilized expansive organic clays. Applied Clay Science, 85, pp.39-45, 2013. Doi.org/10.1016/j.clay.2013.09.008
D. E. Slater, Potential expansive soils in Arabian Peninsula. Journal of Geotechnical Engineering, ASCE, 109: 744–746, 1983. Doi.org/10.1061/(ASCE)0733-9410(1983)109:5(744)
R. Kiliç, Ö. Küçükali and K. Ulamiş, Stabilization of high plasticity clay with lime and gypsum (Ankara, Turkey). Bulletin of Engineering Geology and the Environment, 75(2), pp.735-744. 2016. Doi.org/10.1007/s10064-015-0757-2
A. Kolos, V. Alpysova, G. Osipov and I. Levit, The Effect of Different Additives on the Swelling Process of Heavy Clays. In Transportation Soil Engineering in Cold Regions, Volume 2 (pp. 295-306). Springer, Singapore, 2020. Doi.org/10.1007/978-981-15-0454-9_31
O. O. Amu, A. B. Fajobi and S. O. Afekhuai, Stabilizing potential of cement and fly ash mixture on expansive clay soil. Journal of applied sciences, 5(9), pp.1669-1673, 2005.
E. A. Adeyanju and C. A. Okeke, November. Clay soil stabilization using cement kiln dust. In IOP Conference Series: Materials Science and Engineering (Vol. 640, No. 1, p. 012080). IOP Publishing, 2019. DOI 10.1088/1757-899X/640/1/012080
T. Thyagaraj, S. M. Rao, P. Sai Suresh and U. Salini, Laboratory studies on stabilization of an expansive soil by lime precipitation technique. Journal of materials in civil engineering, 24(8), 1067-1075, 2012. Doi.org/10.1061/(ASCE)MT.1943-5533.0000483
H. Zhao, J. Liu, J. Guo, C. Zhao and B. W, Gong, Reexamination of lime stabilization mechanisms of expansive clay. Journal of Materials in Civil Engineering, 27(1), 04014108, 2015. Doi.org/10.1061/(ASCE)MT.1943-5533.0001040
J. James and P. K. Pandian, Plasticity, swell-shrink, and microstructure of phosphogypsum admixed lime stabilized expansive soil. Advances in Civil Engineering, 2016. Doi.org/10.1155/2016/9798456
A. K. Sabat and P. K. Muni, Effects of limestone dust on geotechnical properties of an expansive soil. Int. J. Appl. Eng. Res, 10, pp.37724-37730, 2015.
J. L. Pastor, R. Tomás, M. Cano, A. Riquelme and E. Gutiérrez, Evaluation of the improvement effect of limestone powder waste in the stabilization of swelling clayey soil. Sustainability, 11(3), p.679, 2019. Doi.org/10.3390/su11030679
R. Ali, H. Khan and A. A. Shah, Expansive soil stabilization using marble dust and bagasse ash. Journal of Science and Research (IJSR), 3(6), pp.2812-2816, 2014.
H. A. Abdelkader, M. Hussein and H. Ye, Influence of Waste Marble Dust on the Improvement of Expansive Clay Soils. Advances in Civil Engineering, 2021. Doi.org/10.1155/2021/3192122
S. Arefin, H. Al-Dakheeli and R. Bulut, Stabilization of expansive soils using ionic stabilizer. Bulletin of Engineering Geology and the Environment, 80(5), pp.4025-4033, 2021. Doi.org/10.1007/s10064-021-02179-5
M. Kianimehr, P. T. Shourijeh, S. M. Binesh, A. Mohammadinia and A. Arulrajah, Utilization of recycled concrete aggregates for light-stabilization of clay soils. Construction and Building Materials, 227, p.116792, 2019. Doi.org/10.1016/j.conbuildmat.2019.116792
J. Loveday, Relative significance of electrolyte and cation exchange effects when gypsum is applied to a sodic clay soil. Soil Research, 14(3), pp.361-371, 1976. Doi.org/10.1071/SR9760361
N. K. Ameta, D. G. M. Purohit, A. S. Wayal and D. Sandeep, Economics of stabilizing bentonite soil with lime-gypsum. Electronic Journal of Geotechnical Engineering, 12, 2007.
I. Yilmaz and B. Civelekoglu, Gypsum: an additive for stabilization of swelling clay soils. Applied clay science, 44(1-2), 166-172, 2009. Doi.org/10.1016/j.clay.2009.01.020
V. R. Murty and P. H. Krishna, Stabilisation of expansive clay bed using calcium chloride solution. Proceedings of the Institution of Civil Engineers-Ground Improvement, 10(1), pp.39-46, 2006. Doi.org/10.1680/grim.2006.10.1.39
V. R. Murty and P. H. Krishna, Amelioration of expansive clay slopes using calcium chloride. Journal of materials in civil engineering, 19(1), pp.19-25, 2007. Doi.org/10.1061/(ASCE)0899-1561(2007)19:1(19)
P. Dubey and R. Jain, Effect of common salt (NaCl) on engineering properties of black cotton soil. Int. J. Sci. Tech. Eng, 2(01), pp.64-68, 2015.
T. O. Durotoye, J. O. Akinmusuru, S. A. Ogbiye and G. Bamigboye, Effect of common salt on the engineering properties of expansive soil. International Journal of Engineering and Technology, 6(7), pp.233-241., 2016.
T. O. Durotoye, J. O. Akinmusuru and K. E. Ogundipe, Experimental datasets on engineering properties of expansive soil treated with common salt. Data in brief, 18, pp.1277-1281, 2018. Doi.org/10.1016/j.dib.2018.04.038
W. R. Azzam, Reduction of the shrinkage–swelling potential with polymer nanocomposite stabilization. Journal of Applied Polymer Science, 123(1), pp.299-306, 2012. Doi.org/10.1002/app.33642
F. Mousavi, E. Abdi and H. Rahimi, Effect of polymer stabilizer on swelling potential and CBR of forest road material. KSCE Journal of Civil Engineering, 18(7), pp.2064-2071, 2014. Doi.org/10.1007/s12205-014-0137-7
M. Vishweshwaran, S. T. Soundarya and E. R. Sujatha, Geotechnical properties of β-glucan treated high swelling clay. In Proceedings of the Indian Geotechnical Conference 2019: IGC-2019 Volume III (pp. 171-181). Singapore: Springer Singapore, 2021. Doi.org/10.1007/978-981-33-6444-8_15
M. T. Fernandez, S. Orlandi, M. Codevilla, T. M. Piqué and D. Manzanal, Performance of calcium lignosulfonate as a stabiliser of highly expansive clay. Transportation Geotechnics, 27, 100469, 2021. Doi.org/10.1016/j.trgeo.2020.100469
A. Rana, I. Khan, S. Ali, T. A. Saleh and S. A. Khan, Controlling shale swelling and fluid loss properties of water-based drilling mud via ultrasonic impregnated SWCNTs/PVP nanocomposites. Energy & Fuels, 34(8), pp.9515-9523, 2020. Doi.org/10.1021/acs.energyfuels.0c01718
M. S. Al-Yasiri and W. T. Al-Sallami, How the drilling fluids can be made more efficient by using nanomaterials. American Journal of Nano Research and Applications, 3(3), pp.41-45, 2015. Doi: 10.11648/j.nano.20150303.12
K. Lv, H. Shen, J. Sun, X. Huang and H. Du, Acylated Inulin as a Potential Shale Hydration Inhibitor in Water Based Drilling Fluids for Wellbore Stabilization. Molecules, 29(7), p.1456, 2024. Doi.org/10.3390/molecules29071456
A. S. Bains, E. S. Boek, P. V. Coveney, S. J. Williams and M. V. Akbar, Molecular modelling of the mechanism of action of organic clay-swelling inhibitors. Molecular Simulation, 26(2), pp.101-145, 2001. DOI: 10.1080/08927020108023012
L. Zhou, Y. He, S. Gou, Q. Zhang, L. Liu, L. Tang, X. Zhou and M. Duan, Efficient inhibition of montmorillonite swelling through controlling flexibly structure of piperazine-based polyether Gemini quaternary ammonium salts. Chemical Engineering Journal, 383, p.123190, 2020. Doi.org/10.1016/j.cej.2019.123190
J. L. Suter, P. V. Coveney, R. L. Anderson, H. C. Greenwell and S. Cliffe, Rule based design of clay-swelling inhibitors. Energy & Environmental Science, 4(11), 4572-4586, 2011. Doi.org/10.1039/C1EE01280K
M. Murtaza, M. S. Kamal, S. M Hussain M. Mahmoud, Clay Swelling Inhibition Using Novel Cationic Gemini Surfactants with Different Spacers. Journal of Surfactants and Detergents, 23(5), pp.963-972, 2020. Doi.org/10.1002/jsde.12420
Z. Tariq, M. S. Kamal, M. Mahmoud, M. Murtaza, A. Abdulraheem and X. Zhou, Dicationic surfactants as an additive in fracturing fluids to mitigate clay swelling: A petrophysical and rock mechanical assessment. ACS omega, 6(24), 15867-15877, 2021. Doi.org/10.1021/acsomega.1c01388
M. Murtaza, H. M. Ahmad, M. S. Kamal, S. M. S. Hussain, M. Mahmoud and S. Patil, Evaluation of clay hydration and swelling inhibition using quaternary ammonium dicationic surfactant with phenyl linker. Molecules, 25(18), p.4333, 2020. Doi.org/10.3390/molecules25184333
M. Ghasemi, A. Moslemizadeh, K. Shahbazi, O. Mohammadzadeh, S. Zendehboudi and S. Jafari, Primary evaluation of a natural surfactant for inhibiting clay swelling. Journal of Petroleum Science and Engineering, 178, pp.878-891, 2019. Doi.org/10.1016/j.petrol.2019.02.073
M. M. Mortland, Clay-organic complexes and interactions. In Advances in agronomy (Vol. 22, pp. 75-117). Academic Press, 1970. Doi.org/10.1016/S0065-2113(08)60266-7
A. K. Quainoo, B. M. Negash, C. B. Bavoh, A. Idris, H. B. Shahpin and and A. D. Yaw, Inhibition Impact of Amino Acids on Swelling Clays: An Experimental and COSMO-RS Simulation Evaluation. Energy & Fuels, 34(11), pp.13985-14000, 2020. Doi.org/10.1021/acs.energyfuels.0c02766
A. K. Quainoo, B. M. Negash, C. B. Bavoh and A. Idris, Natural amino acids as potential swelling and dispersion inhibitors for montmorillonite-rich shale formations. Journal of Petroleum Science and Engineering, 196, p.107664, 2021. Doi.org/10.1016/j.petrol.2020.107664
A. Rezaei and S. R. Shadizadeh, State-of-the-art drilling fluid made of produced formation water for prevention of clay swelling: Experimental Investigation. Chemical Engineering Research and Design, 170, pp.350-365, 2021. Doi.org/10.1016/j.cherd.2021.04.012
R. de Carvalho Balaban, E. L. F. Vidal and M. R. Borges, Design of experiments to evaluate clay swelling inhibition by different combinations of organic compounds and inorganic salts for application in water base drilling fluids. Applied Clay Science, 105, pp.124-130, 2015. Doi.org/10.1016/j.clay.2014.12.029
Y. An and P. Yu, A strong inhibition of polyethyleneimine as shale inhibitor in drilling fluid. Journal of Petroleum Science and Engineering, 161, pp.1-8, 2018. Doi.org/10.1016/j.petrol.2017.11.029
G. A. Archibong, E. U. Sunday, J. C. Akudike, O. C. Okeke and C. Amadi, A review of the principles and methods of soil stabilization. International Journal of Advanced Academic Research| Sciences, 6(3), pp.2488-9849, 2020.
S. K. Gary, Geotechnical Engineering. Soil Mechanics & Foundation Engineering, 2007.
M. Sandelin, Evaluation of dynamic compaction method and rapid impact compaction method for soil improvement, 2018.
O. P. Minaev, Full Set of Equipment for Soil Compaction and Quality Control in Constructing Tall Hydroelectric Dams. Power Technology and Engineering, pp.1-9, 2024. Doi.org/10.1007/s10749-024-01831-w
K. Onyelowe, D. B. Van, C. Igboayaka, F. Orji and H. Ugwuanyi, Rheology of mechanical properties of soft soil and stabilization protocols in the developing countries-Nigeria. Materials Science for Energy Technologies, 2(1), pp.8-14, 2019. Doi.org/10.1016/j.mset.2018.10.001
C. C. Ikeagwuani D. C. Nwonu, Emerging trends in expansive soil stabilisation: A review. Journal of rock mechanics and geotechnical engineering, 11(2), pp.423-440, 2019. Doi.org/10.1016/j.jrmge.2018.08.013
N. Sarier, E. Onder and S. Ersoy, The modification of Na-montmorillonite by salts of fatty acids: An easy intercalation process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 371(1-3), pp.40-49, 2010. Doi.org/10.1016/j.colsurfa.2010.08.061
R. Zhu, Q. Zhou, J. Zhu, Y. Xi and H. He, Organo-clays as sorbents of hydrophobic organic contaminants: sorptive characteristics and approaches to enhancing sorption capacity. Clays and Clay Minerals, 63(3), 199-221, 2015. Doi.org/10.1346/CCMN.2015.0630304
S. F. A. Shattar, N. A. Zakaria, and K. Y. Foo, Feasibility of montmorillonite-assisted adsorption process for the effective treatment of organo-pesticides. Desalination and Water Treatment, 57(29), pp.13645-13677, 2016. Doi.org/10.1080/19443994.2015.1065439
S. Ray, S. Y. Quek, A. Easteal and X. D. Chen, The potential use of polymer-clay nanocomposites in food packaging. International Journal of Food Engineering, 2(4), 2006. Doi.org/10.2202/1556-3758.1149
C. Lee, K. Lee, H, Choi and H. P. Choi, Characteristics of thermally-enhanced bentonite grouts for geothermal heat exchanger in South Korea. Science in China Series E: Technological Sciences, 53(1), pp.123-128, 2010. Doi.org/10.1007/s11431-009-0413-9
J. C. Hesse, M. Schedel, R. Diedel and I. Sass, Influence of swelling and non-swelling clays on the thermal properties of grouting materials for borehole heat exchangers. Applied Clay Science, 210, p.106154, 2021. Doi.org/10.1016/j.clay.2021.106154
J. H. Westsik, L. A. Bray, F. N. Hodges and E. J. Wheelwright, Permeability, swelling and radionuclide retardation properties of candidate backfill materials. MRS Online Proceedings Library (OPL), 6, 329, 1981. Doi.org/10.1557/PROC-6-329
D. E. Moore, C. A. Morrow and J. D. Byerlee, Use of swelling clays to reduce permeability and its potential application to nuclear waste repository sealing. Geophysical Research Letters, 9(9), pp.1009-1012, 1982. Doi.org/10.1029/GL009i009p01009
S. S. Metwally and R. R. Ayoub, Modification of natural bentonite using a chelating agent for sorption of 60Co radionuclide from aqueous solution. Applied Clay Science, 126, pp.33-40, 2016. Doi.org/10.1016/j.clay.2016.02.021
I. A. Shabtai and Y. G. Mishael, Polycyclodextrin–clay composites: regenerable dual-site sorbents for bisphenol a removal from treated wastewater. ACS applied materials & interfaces, 10(32), pp.27088-27097, 2018. Doi.org/10.1021/acsami.8b09715
L. Laloui, B. François, M. Nuth, H. Peron and A. Koliji, A thermo-hydro-mechanical stress-strain framework for modelling the performance of clay barriers in deep geological repositories for radioactive waste. In Unsaturated Soils. Advances in Geo- Engineering (pp. 79-96). CRC Press, 2008.
F. Claret, N. Marty, C. Tournassat, Y. Xiao, F. Whitaker, T. Xu and C. Steefel, Modeling the long-term stability of multi-barrier systems for nuclear waste disposal in geological clay formations. Reactive Transport Modeling: Applications in Subsurface Energy, and Environmental Problems. John Wiley & Sons, Ltd Chichester, UK, pp.395-451, 2018. Doi.org/10.1002/9781119060031.ch8
P. Delage, Microstructure features in the behaviour of engineered barriers for nuclear waste disposal. In Experimental unsaturated soil mechanics (pp. 11-32). Springer, Berlin, Heidelberg, 2007. Doi.org/10.1007/3-540-69873-6_2
P. Delage, Y. J. Cui and A. M. Tang, Clays in radioactive waste disposal. Journal of Rock Mechanics and Geotechnical Engineering, 2(2), pp.111-123, 2010. Doi.org/10.3724/SP.J.1235.2010.00111
R. Dohrmann, S. Kaufhold and B. Lundqvist, The role of clays for safe storage of nuclear waste. In Developments in Clay Science (Vol. 5, pp. 677-710). Elsevier, 2013. Doi.org/10.1016/B978-0-08-098259-5.00024-X
S. Y. Lee and R. W. Tank, Role of clays in the disposal of nuclear waste: a review. Applied clay science, 1(1-2), pp.145-162, 1985. Doi.org/10.1016/0169-1317(85)90570-8
F. Karlsson, Utilization of certain chemical and physical properties of smectite for isolation of radioactive waste in Sweden. Sciences Géologiques, bulletins et mémoires, 87(1), pp.65-73, 1990.
F. Plas, M. Jorda, R. Atabek, J. C. Robinet, J. M. Hoorelbeke and J. Bellet, What will be the engineered barriers for deep disposal of high level radioactive wastes in the future. In High level radioactive waste management, 1990.
R. Kandel, Potential of using aluminosilicates for removal of heavy metals and mycotoxins from feed and water (Master's thesis, Norwegian University of Life Sciences, Ås), 2018.
C. T. Elliott, L. Connolly and O. Kolawole, Potential adverse effects on animal health and performance caused by the addition of mineral adsorbents to feeds to reduce mycotoxin exposure. Mycotoxin research, 36(1), pp.115-126, 2020. Doi.org/10.1007/s12550-019-00375-7
J. H. Liu, W. K. Cai, N. Khatoon, W. H. Yu and C. H. Zhou, On how montmorillonite as an ingredient in animal feed functions. Applied Clay Science, 202, p.105963, 2021. Doi.org/10.1016/j.clay.2020.105963
N. Parvin, M. Sandin and M. Larsbo, Seedbed consolidation and surface sealing for soils of different texture and soil organic carbon contents. Soil and Tillage Research, 206, p.104849, 2021. Doi.org/10.1016/j.still.2020.104849
K. Karthikeyan, N. Kumar, A. Govind and J. Prasad, Assessment of Soil Site Suitability for Cotton Farming in the Semi-arid Regions of Central India: An Analytic Hierarchy Process. Journal of the Indian Society of Soil Science, 67(4), pp.402-410, 2019. DOI:10.5958/0974-0228.2019.00043.4
B. R. D. Santos, F. B. Bacalhau, T. dos Santos Pereira, C. F. Souza and R. Faez, Chitosan-montmorillonite microspheres: a sustainable fertilizer delivery system. Carbohydrate polymers, 127, pp.340-346, 2015. Doi.org/10.1016/j.carbpol.2015.03.064
T. El Assimi, O. Lakbita, A. El Meziane, M. Khouloud, A. Dahchour, R. Beniazza, R. Boulif, M. Raihane and M. Lahcini, Sustainable coating material based on chitosan-clay composite and paraffin wax for slow-release DAP fertilizer. International Journal of Biological Macromolecules, 161, pp.492-502, 2020. Doi.org/10.1016/j.ijbiomac.2020.06.074
L. L. Messa, C. F. Souza and R. Faez, Spray-dried potassium nitrate-containing chitosan/montmorillonite microparticles as potential enhanced efficiency fertilizer. Polymer Testing, 81, p.106196, 2020. Doi.org/10.1016/j.polymertesting.2019.106196
A. Bortolin, F. A. Aouada, L. H. Mattoso and C. Ribeiro, Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. Journal of agricultural and food chemistry, 61(31), pp.7431-7439, 2013. Doi.org/10.1021/jf401273n
S. I. Sempeho, H. T. Kim, E. Mubofu and A. Hilonga, Meticulous overview on the controlled release fertilizers. Advances in Chemistry, 2014(1), p.363071, 2014. Doi.org/10.1155/2014/363071
S. Savci, Investigation of effect of chemical fertilizers on environment. Apcbee Procedia, 1, pp.287-292, 2012. Doi.org/10.1016/j.apcbee.2012.03.047
A. Yadav, K. Yadav and K. A. Abd-Elsalam, Nanofertilizers: types, delivery and advantages in agricultural sustainability. Agrochemicals, 2(2), pp.296-336, 2023. Doi.org/10.3390/agrochemicals2020019
M. Rudmin, S. Banerjee, B. Makarov, K. Ibraeva and A. Konstantinov, A. Mechanical activation of smectite-based nanocomposites for creation of smart fertilizers. Applied Sciences, 12(2), p.809, 2022. Doi.org/10.3390/app12020809
B. D. Kevadiya and H. C. Bajaj, The layered silicate, montmorillonite (MMT) as a drug delivery carrier. In Key Engineering Materials (Vol. 571, pp. 111-132). Trans Tech Publications Ltd, 2013. Doi.org/10.4028/www.scientific.net/KEM.571.111
R. I. Iliescu, E. Andronescu, C. D. Ghitulica, G. Voicu, A. Ficai and M. Hoteteu, Montmorillonite–alginate nanocomposite as a drug delivery system–incorporation and in vitro release of irinotecan. International journal of pharmaceutics, 463(2), pp.184-192, 2014. Doi.org/10.1016/j.ijpharm.2013.08.043
J. H. Park, H. J. Shin, M. H. Kim, J. S. Kim, N. Kang, J. Y. Lee, K. T. Kim, J. I. Lee and D. D. Kim, Application of montmorillonite in bentonite as a pharmaceutical excipient in drug delivery systems. Journal of Pharmaceutical Investigation, 46(4), pp.363-375, 2016. Doi.org/10.1007/s40005-016-0258-8
A. Rivera, L. Valdés, J. Jiménez, I. Pérez, A. Lam, E. Altshuler, L. C. de Ménorval, J. O. Fossum, E. L. Hansen and Z. Rozynek, Smectite as ciprofloxacin delivery system: Intercalation and temperature-controlled release properties. Applied Clay Science, 124, pp.150-156, 2016. Doi.org/10.1016/j.clay.2016.02.006
J. Dong, Z. Cheng, S. Tan and Q. Zhu, Clay nanoparticles as pharmaceutical carriers in drug delivery systems. Expert opinion on drug delivery, 18(6), pp.695-714, 2020. Doi.org/10.1080/17425247.2021.1862792
N. Khatoon, M. Q. Chu and C. H. Zhou, Nanoclay-based drug delivery systems and their therapeutic potentials. Journal of Materials Chemistry B, 8(33), pp.7335-7351, 2020. Doi.org/10.1039/D0TB01031F
H. Yan, X. Chen, C. Bao, J. Yi, M. Lei, C. Ke, W. Zhang and Q. Lin, Synthesis and assessment of CTAB and NPE modified organo-montmorillonite for the fabrication of organo-montmorillonite/alginate based hydrophobic pharmaceutical controlled-release formulation. Colloids and Surfaces B: Biointerfaces, 191, p.110983, 2020. Doi.org/10.1016/j.colsurfb.2020.110983
C. Luo, Q. Yang, X. Lin, C. Qi and G. Li, Preparation and drug release property of tanshinone IIA loaded chitosan-montmorillonite microspheres. International journal of biological macromolecules, 125, pp.721-729, 2019. Doi.org/10.1016/j.ijbiomac.2018.12.072
Y. Yang, X. Wang, F. Yang, B. Mu and A. Wang, Progress and future prospects of hemostatic materials based on nanostructured clay minerals. Biomaterials science, 11(23), pp.7469-7488, 2023. Doi.org/10.1039/D3BM01326J
Y. Tan, Q. Yang, M. Zheng, M. T. Sarwar and H. Yang, Multifunctional nanoclay‐based hemostatic materials for wound healing: a review. Advanced Healthcare Materials, 13(6), p.2302700, 2024. Doi.org/10.1002/adhm.202302700
N. Selvasudha, U. M. Dhanalekshmi, S. Krishnaraj, Y. H. Sundar, N. S. D. Devi and I. Sarathchandiran, Multifunctional clay in pharmaceuticals. In Clay science and technology. London, UK: IntechOpen, 2020.
W. Xie, Y. Chen and H. Yang, Layered clay minerals in cancer therapy: recent progress and prospects. Small, 19(34), p.2300842, 2023. Doi.org/10.1002/smll.202300842
H. A. Fetouh, H. Abdel-Hamid, A. A. H. Zaghloul, A. E. Ghadban and A. M. Ismail, Formulation of promising antibacterial, anticancer, biocompatible and bioactive biomaterial as therapeutic drug delivery system for biologically active compound loaded on clay polymer. Polymer Bulletin, 80(9), pp.9989-10013, 2023. Doi.org/10.1007/s00289-022-04526-2
Z. Yang, T. Ye, F. Ma, X. Zhao, L. Yang, G. Dou, H. Gan, Z. Wu, X. Zhu, R. Gu and Z. Meng, Preparation of chitosan/clay composites for safe and effective hemorrhage control. Molecules, 27(8), p.2571, 2022. Doi.org/10.3390/molecules27082571
Y. Ouyang, Y. Zhao, X. Zheng, Y. Zhang, J. Zhao, S. Wang and Y. Gu, Rapidly degrading and mussel-inspired multifunctional carboxymethyl chitosan/montmorillonite hydrogel for wound hemostasis. International Journal of Biological Macromolecules, 242, p.124960, 2023. Doi.org/10.1016/j.ijbiomac.2023.124960
A. Damato, F. Vianello, E. Novelli, S. Balzan, M. Gianesella, E. Giaretta and G. Gabai, Comprehensive review on the interactions of clay minerals with animal physiology and production. Frontiers in veterinary science, 9, p.889612, 2022. Doi: 10.3389/fvets.2022.889612
D. Dupont and B. Vernisse, Anti-diarrheal effects of diosmectite in the treatment of acute diarrhea in children: a review. Pediatric Drugs, 11, pp.89-99, 2009. Doi.org/10.2165/00148581-200911020-00001
F. Khediri, A. I. Mrad, M. Azzouz, H. Doughi, T. Najjar, H. Mathiex-Fortunet, P. Garnier and A. Cortot, Efficacy of Diosmectite (Smecta)® in the Treatment of Acute Watery Diarrhoea in Adults: A Multicentre, Randomized, Double‐Blind, Placebo‐Controlled, Parallel Group Study. Gastroenterology research and practice, 2011(1), p.783196, 2011. Doi.org/10.1155/2011/783196