Skip to main navigation menu Skip to main content Skip to site footer

Articles

CJPLS: VOL. 13, NO. 2, DECEMBER 2025

Stabilization and Environmental Sustainability of Swelling Clays Soils: A Review

Submitted
May 21, 2025
Published
2025-08-14

Abstract

Water movement in swelling soils conforms with material continuity. This invariably justifies the differences in the gravitational potential energy during expansion and the anisotropic stresses that press the soil but allow for vertical movement. Under fluid conditions, vane efficiency exhibited by macropores is lowered by swelling of the clay, and a poorly drained soil results in surface saturation. The type of water applied to soil material tends to have an impact on the positioning of cracks in swelling clays, and thus, cracks can remain pathways for preferential flow much after they are covered at the soil surface. Over time, chemicals and chemical compounds have been utilized to further enhance the engineering properties of such soils. However, environmentally friendly biodegradable biological stabilizers are taking the place of conventional stabilizers, most especially lime and cement. Additionally, biochar amendment, which is ecofriendly, has also been found to lower the swelling index capability of expansive clay soil. Despite the dangers associated with swelling clay, it has found extensive use as adsorbents, carriers in drug delivery systems, and the building of a storage tank for the disposal of radioactive materials. In addition, swelling clays have found significant usage in the production of controlled-release fertilizers (CRFs) formulations. Hence this paper emphasizes the environmental impact of building large structures and road construction on swelling clay soils, highlights recent progress in the inhibition and stabilization of swelling soils to sustain the environment, and enumerates the economic importance associated with swelling clay soils.

References

  1. N. Kumari and C. Mohan, Basics of clay minerals and their characteristic properties. Clay Clay Miner, 24(1), 2021.
  2. F. L. Pellet, M. Keshavarz, and M. Boulon, Influence of humidity conditions on shear strength of clay rock discontinuities. Engineering Geology, 157, pp.33-38, 2013. Doi.org/10.1016/j.enggeo.2013.02.002
  3. M. Fernandes, A. Denis, R. Fabre, J. F. Lataste, and M. Chrétien, In situ study of the shrinkage-swelling of a clay soil over several cycles of drought-rewetting. Engineering Geology, 192, pp.63-75, 2015. Doi.org/10.1016/j.enggeo.2015.03.017
  4. G. Xie, Y. Xiao, M. Deng, Y. Luo, and P. Luo, Low molecular weight branched polyamine as a clay swelling inhibitor and its inhibition mechanism: experiment and density functional theory simulation. Energy & Fuels, 34(2), 2169-2177, 2020. Doi.org/10.1021/acs.energyfuels.9b04003
  5. S. Guggenheim, and R. T. Martin, Definition of clay and clay mineral: joint report of the AIPEA nomenclature and CMS nomenclature committees. Clays and clay minerals, 43(2), pp.255-256, 1995. Doi.org/10.1346/CCMN.1995.0430213
  6. G. W. Gee and D. Or, 2.4 Particle-size analysis. Methods of soil analysis. Part, 4(598), pp.255-293, 2002. Doi.org/10.2136/sssabookser5.4.c12
  7. M. C. Floody, B. K. G., Theng, P. Reyes, and M. L. Mora, Natural nanoclays: applications and future trends–a Chilean perspective. Clay Minerals, 44(2), pp.161-176, 2009. Doi.org/10.1180/claymin.2009.044.2.161
  8. D. E.Jones Jr, and W. G. Holtz, Expansive soils-the hidden disaster. Civil engineering, 43(8), 1973.
  9. C. D. Alonso-Martirena, F. E. Sánchez, and J. Á. R. Masferrer, Risk Analysis for Swelling Clays to Buildings is South Madrid, Spain. In Engineering Geology for Society and Territory-Volume 5 (pp. 1243-1246). Springer, Cham. 2015. Doi.org/10.1007/978-3-319-09048-1_237
  10. L. Jones, V. Banks and I. Jefferson, Swelling and shrinking soils. Geological Society, London, Engineering Geology Special Publications, 29(1), pp.223-242, 2020. Doi.org/10.1144/EGSP29.8
  11. A. U. R. Tariq and D. S. Durnford, Analytical volume change model for swelling clay soils. Soil Science Society of America Journal, 57(5), 1183-1187, 1993. Doi.org/10.2136/sssaj1993.03615995005700050003x
  12. M. Julina, and T. Thyagaraj, Determination of volumetric shrinkage of an expansive soil using digital camera images. International Journal of Geotechnical Engineering, 15(5), pp.624-632, 2021. Doi.org/10.1080/19386362.2018.1460961
  13. A. G. Sharanya, H. Mudavath and T. Thyagaraj, Review of methods for predicting soil volume change induced by shrinkage. Innovative Infrastructure Solutions, 6(2), pp.1-16, 2021. Doi.org/10.1007/s41062-021-00485-1
  14. I. Bérend, J. M. Cases, M. François, J. P. Uriot, L. Michot, I. A. Masion and F. Thomas, Mechanism of adsorption and desorption of water vapor by homoionic montmorillonites: 2. The Li+, Na+, K+, Rb+, and Cs+-exchanged Forms. Clays and Clay Minerals, 43(3) 324-336, 1995. Doi.org/10.1346/CCMN.1995.0430307
  15. D. A. Young and D. E. Smith, Simulations of clay mineral swelling and hydration: Dependence upon interlayer ion size and charge. The Journal of Physical Chemistry B, 104(39), 9163-9170, 2000. Doi.org/10.1021/jp000146k
  16. E. Rinnert, C. Carteret, B. Humbert, G. Fragneto-Cusani, J.D. Ramsay, A. Delville, J. L. Robert, I. Bihannic, M. Pelletier and L. J. Michot, Hydration of a synthetic clay with tetrahedral charges: a multidisciplinary experimental and numerical study. The Journal of Physical Chemistry B, 109(49), pp.23745-23759, 2005. Doi.org/10.1021/jp050957u
  17. D. A. Laird, C. Shang, and M. L. Thompson, Hysteresis in crystalline swelling of smectites. Journal of Colloid and Interface Science, 171(1), pp.240-245, 1995. Doi.org/10.1006/jcis.1995.1173
  18. S. M. Rao, T. Thyagaraj and P. Rao, Crystalline and osmotic swelling of an expansive clay inundated with sodium chloride solutions. Geotechnical and Geological Engineering, 31(4), pp.1399-1404, 2013. Doi.org/10.1007/s10706-013-9629-3
  19. M. Daab, N. J. Eichstaedt, C. Habel, S. Rosenfeldt, H. Kalo, H. Schießling, S. Förster, S. and J. Breu, Onset of osmotic swelling in highly charged clay minerals. Langmuir, 34(28), pp.8215-8222, 2018. DOI: 10.1021/acs.langmuir.8b00492.
  20. F. T. Madsen and M. Müller-Vonmoos, The swelling behaviour of clays. Applied Clay Science, 4(2), pp.143-156, 1989. Doi.org/10.1016/0169-1317(89)90005-7
  21. J. D. Nelson and D. J. Miller, Expansive soils: problems and practice in foundation and pavement engineering. Wiley, New York, 1992.
  22. A. W. Skempton, The colloidal activity of clays. Selected papers on soil mechanics, pp.106-118, 1953.
  23. M. Mokhtari, and M. Dehghani, Swell-shrink behavior of expansive soils, damage and control. Electronic Journal of Geotechnical Engineering, 17, pp.2673-2682, 2012.
  24. D. R. Snethen,. An evaluation of methodology for prediction and minimization of detrimental volume change of expansive soils in highway subgrades, 1979.
  25. M. F. Hochella, D. W. Mogk, J. Ranville, I. C. Allen, G. W. Luther, L. C. Marr, B. P. McGrail, M. Murayama, N. P. Qafoku, K. M. Rosso, and N. Sahai, Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science, 363(6434), 2019. Doi.org/10.1126/science.aau8299
  26. I. C. Bourg, and J. B. Ajo-Franklin, Clay, water, and salt: Controls on the permeability of fine-grained sedimentary rocks. Accounts of chemical research, 50(9), pp.2067-2074, 2017. Doi.org/10.1021/acs.accounts.7b00261
  27. L. Charlet, P. Alt-Epping, P. Wersin, and B. Gilbert, Diffusive transport and reaction in clay rocks: A storage (nuclear waste, CO2, H2), energy (shale gas) and water quality issue. Advances in Water Resources, 106, pp.39-59, 2017. Doi.org/10.1016/j.advwatres.2017.03.019
  28. B. K. Theng, and G. Yuan, G. Nanoparticles in the soil environment. Elements, 4(6), 395-399, 2008. Doi.org/10.2113/gselements.4.6.395
  29. P. Sellin, and O. X. Leupin, The use of clay as an engineered barrier in radioactive-waste management–a review. Clays and Clay Minerals, 61(6), pp.477-498, 2013. Doi.org/10.1346/CCMN.2013.0610601
  30. H. N. Faisal, K. S. Katti, and D. R. Katti, Molecular mechanics of the swelling clay tactoid under compression, tension and shear. Applied Clay Science, 200, p.105908, 2021. Doi.org/10.1016/j.clay.2020.105908
  31. G. E. Christidis, A. E. Blum, and D.D. Eberl, Influence of layer charge and charge distribution of smectites on the flow behaviour and swelling of bentonites. Applied Clay Science, 34(1-4), pp.125-138, 2006. Doi.org/10.1016/j.clay.2006.05.008
  32. D. A. Laird, Influence of layer charge on swelling of smectites. Applied clay science, 34(1-4), pp.74-87, 2006. Doi.org/10.1016/j.clay.2006.01.009
  33. Bell, F.G., & Culshaw, M.G. (2001). Problems soils: a review from a British perspective. In Problematic Soils: Proceedings of the Symposium held at the Nottingham Trent University on 8 November 2001 (pp. 1-35). Thomas Telford Publishing.
  34. J. A. Smethurst, D. Clarke, and W. Powrie, Seasonal changes in pore water pressure in a grass-covered cut slope in London Clay. In Stiff Sedimentary Clays: Genesis and Engineering Behaviour: Géotechnique Symposium in Print 2007 (pp. 337-351), 2011. Thomas Telford Ltd. Doi.org/10.1680/ssc.41080.0029
  35. B. Fatahi, H. Khabbaz, and B. Indraratna, Modelling of unsaturated ground behavior influenced by vegetation transpiration. Geomechanics and Geoengineering, 9(3), pp.187-207, 2014. Doi.org/10.1080/17486025.2014.880520
  36. U. Pathirage, B. Indraratna, M. Pallewattha, M., and A. Heitor, A theoretical model for total suction effects by tree roots. Environmental Geotechnics, 6(6), pp.353-360, 2017. Doi.org/10.1680/jenge.15.00065
  37. R. Saadeldin, Y. Hu, and A. Henni, Soil-pipe-atmosphere interaction under field conditions. Bulletin of Engineering Geology and the Environment, 80(6), pp.4803-4819, 2021. Doi.org/10.1007/s10064-020-02002-7
  38. D. Clarke and J. A. Smethurst, Effects of climate change on cycles of wetting and drying in engineered clay slopes in England. Quarterly Journal of Engineering Geology and Hydrogeology, 43(4), pp.473-486, 2010.
  39. K. M. Briggs, F. A. Loveridge and S. Glendinning, Failures in transport infrastructure embankments. Engineering Geology, 219, pp.107-117, 2017. Doi.org/10.1016/j.enggeo.2016.07.016
  40. A. A. Basma, Estimating uplift of foundations due to expansion: a case history. Geotechnical Engineering 22, 217–231, 1991.
  41. N. Y. Osman, The development of a predictive damage condition model of light structures on expansive soils using hybrid artificial intelligence techniques. Swinburne University of Technology, Faculty of Engineering and Industrial Sciences, 2007.
  42. E. Sebastián, G. Cultrone, D. Benavente, L. L. Fernandez, K. Elert, and C. Rodriguez-Navarro, Swelling damage in clay-rich sandstones used in the church of San Mateo in Tarifa (Spain). Journal of cultural heritage, 9(1), pp.66-76, 2008. Doi.org/10.1016/j.culher.2007.09.002
  43. G. Xeidakis, P. Koudoumakis, and A. Tsirambides, Road construction on swelling soils: the case of Strymi Soils, Rhodope, Thrace, Northern Greece. Bulletin of engineering geology and the environment, 63, 93-101, 2004. Doi.org/10.1007/s10064-003-0214-5
  44. S. S. Ray and S. Chapter, An overview of pure and organically modified clays. In: Clay-containing polymer nanocomposites. Elsevier, Amsterdam, pp 1–24, 2013. Doi.org/10.1016/B978-0-444-59437-2.00001-6
  45. D. R. Snethen, Influence of local tree species on shrink/swell behavior of Permian clays in central Oklahoma. In Expansive Clay Soils and Vegetative Influence on Shallow Foundations (pp. 158-171), 2001. Doi.org/10.1061/40592(270)9
  46. X. Zhang, Consolidation theories for saturated-unsaturated soils and numerical simulation of residential buildings on expansive soils. Texas A&M University, 2004.
  47. A. M. A. N. Karunarathne, M. Fardipour, E. F. Gad, P. Rajeev, M. M. Disfani, S. Sivanerupan, J. L. Wilson, Modelling of climate induced moisture variations and subsequent ground movements in expansive soils. Geotechnical and Geological Engineering, 36(4), pp.2455-2477, 2018. Doi.org/10.1007/s10706-018-0476-0
  48. M. Sharifipour, A. Nakhaee and P. Pourafshary, Model development of permeability impairment due to clay swelling in porous media using micromodels. Journal of Petroleum Science and Engineering, 175, pp.728-742, 2019. Doi.org/10.1016/j.petrol.2018.12.082
  49. L. Zhu, W. Shen, J. Shao, J. and M. He, Insight of molecular simulation to better assess deformation and failure of clay-rich rocks in compression and extension. International Journal of Rock Mechanics and Mining Sciences, 138, 104589, 2021. Doi.org/10.1016/j.ijrmms.2020.104589
  50. H. B. Seed, R. J. Woodward, and R. Lundgren, Prediction of swelling potential for compacted clays. Transactions of the American Society of Civil Engineers, 128(1), pp.1443-1477, 1963.
  51. B. Zamin, H. Nasir, K. Mehmood, Q. Iqbal, A. Farooq, and M. Tufail, An experimental study on the geotechnical, mineralogical, and swelling behavior of KPK expansive soils. Advances in civil engineering, 2021(1), p.8493091, 2021. Doi.org/10.1155/2021/8493091
  52. F. Uddin, Clays, nanoclays, and montmorillonite minerals. Metallurgical and Materials Transactions A, 39(12), pp.2804-2814. 2008. Doi.org/10.1007/s11661-008-9603-5
  53. H. G. Dill, Residual clay deposits on basement rocks: The impact of climate and the geological setting on supergene argillitization in the Bohemian Massif (Central Europe) and across the globe. Earth-Science Reviews, 165, pp.1-58, 2017. Doi.org/10.1016/j.earscirev.2016.12.004
  54. E. J. Oziegbe, V. O. Olarewaju, and O. O. Ocan, Characterization, and utilization of clays from Origo and Awo Southwestern Nigeria, Malaysian J. Geosci., 3(2), 52–58, 2019. Doi.org/10.26480/mjg.02.2019.52.58
  55. S. Hillier, Erosion, sedimentation and sedimentary origin of clays. In Origin and mineralogy of clays (pp. 162-219). Springer, Berlin, Heidelberg, 1995. Doi.org/10.1007/978-3-662-12648-6_4
  56. H. Chamley, Clay sedimentology. Springer Science & Business Media, 2013.
  57. A. Inoue, Formation of clay minerals in hydrothermal environments. In Origin and mineralogy of clays (pp. 268-329). Springer, Berlin, Heidelberg. 1995. Doi.org/10.1007/978-3-662-12648-6_7
  58. A. Mas, D. Guisseau, P. P. Mas, D. Beaufort, A. Genter, B. Sanjuan, and J. P. Girard, Clay minerals related to the hydrothermal activity of the Bouillante geothermal field (Guadeloupe). Journal of Volcanology and Geothermal research, 158(3-4), pp.380-400, 2006. Doi.org/10.1016/j.jvolgeores.2006.07.010
  59. R. Gholami, H. Elochukwu, N. Fakhari and M. Sarmadivaleh, A review on borehole instability in active shale formations: Interactions, mechanisms and inhibitors. Earth-Science Reviews, 177, pp.2-13, 2018. Doi.org/10.1016/j.earscirev.2017.11.002
  60. S. Li, H. He, Q. Tao, J. Zhu, W. Tan, S. Ji, Y. Yang, and C. Zhang, Kaolinization of 2:1 type clay minerals with different swelling properties. American Mineralogist: Journal of Earth and Planetary Materials, 105(5), pp.687-696, 2020. Doi.org/10.2138/am-2020-7339
  61. D. R. Snethen, F. C. Townsend, L. D. Johnson, D. M. Patrick, and P. J. Vedros, A review of engineering experiences with expansive soils in highway subgrades. Interim Report Army Engineer Waterways Experiment Station, 1975.
  62. H. H. Murray, Structure and composition of the clay minerals and their physical and chemical properties. Developments in clay science, 2, pp.7-31, 2006. Doi.org/10.1016/S1572-4352(06)02002-2
  63. T. Al-Ani, and O. Sarapää, Clay and clay mineralogy. Physical-chemical properties and industrial uses, pp.11-65, 2008.
  64. U. Kuila, and M. Prasad, Specific surface area and pore‐size distribution in clays and shales. Geophysical Prospecting, 61(2-Rock Physics for Reservoir Exploration, Characterisation and Monitoring), pp.341-362, 2013. Doi.org/10.1111/1365-2478.12028
  65. M. L. Whittaker, L. R. Comolli, B. Gilbert, and J. F. Banfield, Layer size polydispersity in hydrated montmorillonite creates multiscale porosity networks. Applied Clay Science, 190, 105548, 2020. Doi.org/10.1016/j.clay.2020.105548
  66. T. Dabat, P. Porion, F. Hubert, E. Paineau, B. Dazas, B. Grégoire, E. Tertre, A, Delville, and E. Ferrage, Influence of preferred orientation of clay particles on the diffusion of water in kaolinite porous media at constant porosity. Applied Clay Science,184, p.105354, 2020. Doi.org/10.1016/j.clay.2019.105354
  67. A. Asaad, F. Hubert, E. Ferrage, T. Dabat. E. Paineau, P. Porion, S. Savoye, B. Gregoire, B. Dazas, A. Delville, and E. Tertre, Role of interlayer porosity and particle organization in the diffusion of water in swelling clays. Applied Clay Science, 207, p.106089, 2021. Doi.org/10.1016/j.clay.2021.106089
  68. G. Borchardt, Smectites. Minerals in soil environments, 1, pp.675-727, 1989. Doi.org/10.2136/sssabookser1.2ed.c14
  69. R. L. Anderson, I. Ratcliffe, H. C. Greenwell, P. A. Williams, S. Cliffe P. V. Coveney, Clay swelling—a challenge in the oilfield. Earth-Science Reviews, 98(3-4), pp.201-216, 2010. Doi.org/10.1016/j.earscirev.2009.11.003
  70. M. Robinson and K. J. Beven, The effect of mole drainage on the hydrological response of a swelling clay soil. Journal of Hydrology, 64(1-4), pp.205-223, 1983. Doi.org/10.1016/0022-1694(83)90069-0
  71. T. Ma, C. Wei, C. Yao and Yi, Microstructural evolution of expansive clay during drying–wetting cycle. Acta Geotechnica, 15(8), 2020. Doi.org/10.1007/s11440-020-00938-4
  72. J. Kodikara, S. L. Barbour and D.G. Fredlund, February. Changes in clay structure and behaviour due to wetting and drying. In Proceedings 8th Australia New Zealand conference on geomechanics: consolidating knowledge (p. 179). Barton, ACT: Australian Geomechanics Society, 1999.
  73. Y. J. Cui, C. Loiseau and P. Delage,, March. Microstructure changes of a confined swelling soil due to suction controlled hydration. In Unsaturated soils: proceedings of the Third International Conference on Unsaturated Soils (pp. 10-13). UNSAT Recife, Brazil, 2002.
  74. T. Thiebault, Raw and modified clays and clay minerals for the removal of pharmaceutical products from aqueous solutions: State of the art and future perspectives. Critical Reviews in Environmental Science and Technology, 50(14), 1451-1514, 2019. Doi.org/10.1080/10643389.2019.1663065
  75. A.H. Alias, M. N. Norizan, F. A. Sabaruddin, M. R. M. Asyraf, M. N. F. Norrrahim, A. R. Ilyas, A. M. Kuzmin, M. Rayung, S. S, Shazleen, A. Nazrin and S. F. K. Sherwani, Hybridization of MMT/lignocellulosic fiber reinforced polymer nanocomposites for structural applications: a review. Coatings, 11(11), p.1355, 2021. Doi.org/10.3390/coatings11111355
  76. D. Smiles and P. A. Raats, Hydrology of swelling clay soils. Encyclopedia of Hydrological Sciences, 2006. Doi.org/10.1002/0470848944.hsa071
  77. C. M. Heppell, T. P. Burt and R. J. Williams, Variations in the hydrology of an underdrained clay hillslope. Journal of Hydrology, 227(1-4), pp.236-256, 2000. Doi.org/10.1016/S0022-1694(99)00189-4
  78. J. Ruedrich, T. Bartelsen, R. Dohrmann, and S. Siegesmund, Moisture expansion as a deterioration factor for sandstone used in buildings. Environmental Earth Sciences, 63, pp.1545-1564, 2011. Doi.org/10.1007/s12665-010-0767-0
  79. D. Tessier, Behaviour and microstructure of clay minerals. In Soil colloids and their associations in aggregates (pp. 387-415). Boston, MA: Springer US, 1990. Doi.org/10.1007/978-1-4899-2611-1_14
  80. D. R. Katti, K. B. Thapa, H. N. Faisal and K. Katti, Molecular Origin of Compressibility and Shear Strength of Swelling Clays. In International Conference of the International Association for Computer Methods and Advances in Geomechanics (pp. 641-647). Springer, Cham., 2021. Doi.org/10.1007/978-3-030-64514-4_66
  81. C. T. Johnston, G. Sposito, and C. Erickson, Vibrational probe studies of water interactions with montmorillonite. Clays and Clay Minerals, 40(6), 722-730, 1992. Doi.org/10.1346/CCMN.1992.0400611
  82. S. Karaborni, B. Smit, W. Heidug, J. Urai and E. Van Oort, The swelling of clays: molecular simulations of the hydration of montmorillonite. Science, 271(5252), pp.1102-1104, 1996. Doi.org/10.1126/science.271.5252.1102
  83. C. Lucian, Geotechnical aspects of buildings on expansive soils in Kibaha, Tanzania (Doctoral dissertation, KTH), 2008.
  84. E. Ferrage, Investigation of the interlayer organization of water and ions in smectite from the combined use of diffraction experiments and molecular simulations. A review of methodology, applications, and perspectives. Clays and Clay Minerals, 64(4), 348-373, 2016. Doi.org/10.1346/CCMN.2016.0640401
  85. B. Chen, J. R. Evans, H. C. Greenwell, P. Boulet, P. V. Coveney, A. A. Bowden, and A. Whiting, A critical appraisal of polymer–clay nanocomposites. Chemical Society Reviews, 37(3), 568-594, 2008. Doi.org/10.1039/B702653F
  86. V. Y. Chertkov and I. Ravina, Modeling the crack network of swelling clay soils. Soil Science Society of America Journal, 62(5), pp.1162-1171, 1998. Doi.org/10.2136/sssaj1998.03615995006200050002x
  87. C. S. Tang, C. Zhu, T. Leng, B. Shi, Q. Cheng and H. Zeng, Three-dimensional characterization of desiccation cracking behavior of compacted clayey soil using X-ray computed tomography. Engineering geology, 255, 1-10, 2019. Doi.org/10.1016/j.enggeo.2019.04.014
  88. V. Y. Chertkov and I. Ravina, Networks originating from the multiple cracking of different scales in rocks and swelling soils. International journal of fracture, 128(1), pp.263-270, 2004. Doi.org/10.1023/B:FRAC.0000040989.82613.36
  89. V. Y. Chertkov and I. Ravina, Tortuosity of crack networks in swelling clay soils. Soil Science Society of America Journal, 63(6), pp.1523-1530, 1999. Doi.org/10.2136/sssaj1999.6361523x
  90. C. S. Gourley, D. Newill, and H. D. Schreiner, Expansive soils: TRL’s research strategy. In Engineering Characteristics of Arid Soils (pp. 247-260), 2020. CRC Press.
  91. H. Afrin, A review on different types soil stabilization techniques. International Journal of Transportation Engineering and Technology, 3(2), pp.19-24, 2017. Doi: 10.11648/j.ijtet.20170302.12
  92. U. Zada, A. Jamal, M. Iqbal, S. M. Eldin, M. Almoshaogeh, S. R. Bekkouche and S. Almuaythir, Recent advances in expansive soil stabilization using admixtures: current challenges and opportunities. Case Studies in Construction Materials, 18, p.e01985, 2023. Doi.org/10.1016/j.cscm.2023.e01985
  93. S. Gautam, L. R. Hoyos, S. He, S. Prabakar, and X. Yu, Chemical treatment of a highly expansive clay using a liquid ionic soil stabilizer. Geotechnical and Geological Engineering, 38, pp.4981-4993, 2020. Doi.org/10.1007/s10706-020-01342-1
  94. M. Salimi and A. Ghorbani, Mechanical and compressibility characteristics of a soft clay stabilized by slag-based mixtures and geopolymers. Applied Clay Science, 184, p.105390, 2020. Doi.org/10.1016/j.clay.2019.105390
  95. W.A.M. Ogila, Effectiveness of fresh cement kiln dust as a soil stabilizer and stabilization mechanism of high swelling clays. Environmental Earth Sciences, 80(7), p.283, 2021. Doi.org/10.1007/s12665-021-09589-4
  96. A. Smaida, B. Mekerta and M. K. Gueddouda, Physico-mechanical stabilization of a high swelling clay. Construction and Building Materials, 289, 123197, 2021. Doi.org/10.1016/j.conbuildmat.2021.123197
  97. P. Jamsawang, B. Adulyamet, P. Voottipruex, P. Jongpradist, S. Likitlersuang and K. Tantayopin, The free swell potential of expansive clays stabilized with the shallow bottom ash mixing method. Engineering Geology, 315, p.107027, 2023. Doi.org/10.1016/j.enggeo.2023.107027
  98. A. Abdullatif, I. A. Al-Hulail, E. Al-Mutawa, January. Robust clay stabilizer to control swelling in a rich swellable clay formation: A laboratory study. In International Petroleum Technology Conference (p. D022S166R003). IPTC., 2020. Doi.org/10.2523/IPTC-20305-MS
  99. D. Barman and S. K. Dash, Stabilization of expansive soils using chemical additives: A review. Journal of Rock Mechanics and Geotechnical Engineering, 14(4), pp.1319-1342, 2022. Doi.org/10.1016/j.jrmge.2022.02.011
  100. A. Almajed, H. Abbas, M. Arab, A. Alsabhan, W. Hamid and Y. Al-Salloum, Enzyme-Induced Carbonate Precipitation (EICP)-Based methods for ecofriendly stabilization of different types of natural sands. Journal of Cleaner Production, 274, p.122627, 2020. Doi.org/10.1016/j.jclepro.2020.122627
  101. F. Pourebrahim and S. Y. Zolfegharifar, Stabilizers Effects Comprehensive Assessment on the Physical and Chemical Properties of Soft Clays. Shock and Vibration, 2022(1), p.5991132, 2022. Doi.org/10.1155/2022/5991132
  102. D. Dorairaj N. Osman, Present practices and emerging opportunities in bioengineering for slope stabilization in Malaysia: An overview. PeerJ, 9, p.e10477, 2021.
  103. R. Burman and L. O. Pochop, Evaporation, evapotranspiration and climatic data. Developments in atmospheric science, 22, 1994.
  104. A. D. Wilson, and D. G. Lester, Trench inserts as long-term barriers to root transmission for control of oak wilt. Plant disease, 86(10), 1067-1074, 2002. Doi.org/10.1094/PDIS.2002.86.10.1067
  105. S. Vorwerk, D. Cameron, and G. Keppel, Clay soil in suburban environments: Movement and stabilization through vegetation. In Ground improvement case histories (pp. 655-682). Butterworth-Heinemann, 2015. Doi.org/10.1016/B978-0-08-100191-2.00022-8
  106. A. Jotisankasa, and T. Sirirattanachat, Effects of grass roots on soil-water retention curve and permeability function. Canadian Geotechnical Journal, 54(11), pp.1612-1622, 2017. Doi.org/10.1139/cgj-2016-0281
  107. H. Assadollahi, and H. Nowamooz, Long-term analysis of the shrinkage and swelling of clayey soils in a climate change context by numerical modelling and field monitoring. Computers and Geotechnics, 127, p.103763, 2020. Doi.org/10.1016/j.compgeo.2020.103763
  108. W. Potter and D. A. and Cameron, D. A. (2005). Potential Remediation of Rail Track Foundations in Poorly Drained Clay Sites with Native Vegetation. In Proceedings of the international conferences on the bearing capacity of roads, railways and airfields, 2020.
  109. P. Pei, Y. Zhao, P. Ni and G. Mei, A protective measure for expansive soil slopes based on moisture content control. Engineering Geology, 269, p.105527, 2020. Doi.org/10.1016/j.enggeo.2020.105527
  110. J. Kim, S. Jeong, S. Park and J Sharma, Influence of rainfall-induced wetting on the stability of slopes in weathered soils. Engineering Geology, 75(3-4), pp.251-262, 2004. Doi.org/10.1016/j.enggeo.2004.06.017
  111. T. S. Hou, G. L. Xu, Y. J. Shen, Z. Z. Wu, N. N. Zhang and R.Wang, Formation mechanism and stability analysis of the Houba expansive soil landslide. Engineering Geology, 161, pp.34-43, 2013. Doi.org/10.1016/j.enggeo.2013.04.010
  112. A. Lloret, M. V. Villar, M. Sanchez, A. Gens, X. Pintado and E. E. Alonso, Mechanical behaviour of heavily compacted bentonite under high suction changes. Géotechnique, 53(1), pp.27-40, 2003. Doi.org/10.1680/geot.2003.53.1.27
  113. Q. Liu, G. Liu, C. Huang and H. Li, Soil physicochemical properties associated with quasi-circular vegetation patches in the Yellow River Delta, China. Geoderma, 337, pp.202-214, 2019. Doi.org/10.1016/j.geoderma.2018.09.021
  114. J. Li, H. Chen, K. Guo, W. Li, X. Feng and X. Liu, Changes in soil properties induced by pioneer vegetation patches in coastal ecosystem. Catena, 204, p.105393. 2021a. Doi.org/10.1016/j.catena.2021.105393
  115. F. Melinda, H. Rahardjo, K. K. Han and E. C. Leong, Shear strength of compacted soil under infiltration condition. Journal of Geotechnical and Geoenvironmental Engineering, 130(8), pp.807-817, 2004. Doi.org/10.1061/(ASCE)1090-0241(2004)130:8(807)
  116. A. J. Puppala, K. Punthutaecha, K. and S. K. Vanapalli, Soil-water characteristic curves of stabilized expansive soils. Journal of Geotechnical and Geoenvironmental Engineering, 132(6), pp.736-751, 2006. Doi.org/10.1061/(ASCE)1090-0241(2006)132:6(736)
  117. J. H. Li and L. M. Zhang, Study of desiccation crack initiation and development at ground surface. Engineering Geology, 123(4), pp.347-358, 2011. Doi.org/10.1016/j.enggeo.2011.09.015
  118. H. Adem and S. Vanapalli, Soil–environment interactions modelling for expansive soils. Environmental Geotechnics, 3(3), pp.178-187, 2014. Doi.org/10.1680/envgeo.13.00089
  119. W. G. Holtz, The influence of vegetation on the swelling and shrinking of clays in the United States of America. Géotechnique, 33(2), pp.159-163, 1983. Doi.org/10.1680/geot.1983.33.2.159
  120. B. G. Richards, P. Peter and W. W. Emerson, The effects of vegetation on the swelling and shrinking of soils in Australia. Geotechnique, 33(2), pp.127-139, 1983. Doi.org/10.1680/geot.1983.33.2.127
  121. R. Driscoll, The influence of vegetation on the swelling and shrinking of clay soils in Britain. Geotechnique, 33(2), 93-105, 1983. Doi.org/10.1680/geot.1983.33.2.93
  122. M. Lawson, Tree related subsidence of low rise buildings and the management options. Arboricultural Journal, 27(3), pp.191-219, 2004. Doi.org/10.1080/03071375.2004.9747379
  123. S. Jian, C. Zhao, S. Fang and K. Yu, Effects of different vegetation restoration on soil water storage and water balance in the Chinese Loess Plateau. Agricultural and Forest Meteorology, 206, pp.85-96, 2015. Doi.org/10.1016/j.agrformet.2015.03.009
  124. J. J. Hamilton, Foundations on Swelling or Shrinking Sub-softs. Canadian Building Digest (CBD)- 184, 1-7, 1977.
  125. J. T. Bryant, D. V. Morris, S. P. Sweeney, M. D. Gehrig and J. D. Mathis, Tree root influence on soil-structure interaction in expansive clay soils. In Expansive Clay Soils and Vegetative Influence on Shallow Foundations (pp. 110-131), 2001. Doi.org/10.1061/40592(270)7
  126. W. Powrie and J. Smethurst, Climate and vegetation impacts on infrastructure cuttings and embankments. In Proceedings of the 8th International Congress on Environmental Geotechnics Volume 1: Towards a Sustainable Geoenvironment 8th (pp. 128-144). Springer Singapore, 2019. Doi.org/10.1007/978-981-13-2221-1_7
  127. S. Glendinning, F. Loveridge, R. E. Starr-Keddle, M. F. Bransby and P. N. Hughes, Role of vegetation in sustainability of infrastructure slopes. In Proceedings of the Institution of Civil Engineers-Engineering Sustainability (Vol. 162, No. 2, pp. 101-110), 2009. Doi.org/10.1680/ensu.2009.162.2.101
  128. S. M. Hejazi, M. Sheikhzadeh, S. M. Abtahi and A. Zadhoush, A simple review of soil reinforcement by using natural and synthetic fibers. Construction and building materials, 30, pp.100-116, 2012. Doi.org/10.1016/j.conbuildmat.2011.11.045
  129. A. Gheris and A. Hamrouni, Treatment of an expansive soil using vegetable (DISS) fibre. Innovative Infrastructure Solutions, 5(1), pp.1-17, 2020.
  130. B. Indraratna, B. Fatahi and H. Khabbaz, Numerical analysis of matric suction effects of tree roots. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 159(2), pp.77-90, 2006. Doi.org/10.1680/geng.2006.159.2.77
  131. G. Stotzky and D. Pramer, Activity, ecology, and population dynamics of microorganisms in soil. CRC critical reviews in microbiology, 2(1), 59-137, 1972. Doi.org/10.3109/10408417209108383
  132. J. S. Buyer, J. R. Teasdale, D. P. Roberts, I. A. Zasada and J. E. Maul, Factors affecting soil microbial community structure in tomato cropping systems. Soil Biology and Biochemistry, 42(5), pp.831-841, 2010. Doi.org/10.1016/j.soilbio.2010.01.020
  133. Z. Liu, H. Wei, J. Zhang, M. Saleem, Y. He, J. Zhong and R. Ma, Seasonality regulates the effects of acid rain on microbial community in a subtropical agricultural soil of Southern China. Ecotoxicology and Environmental Safety, 224, p.112681, 2021. Doi.org/10.1016/j.ecoenv.2021.112681
  134. H. Li, Y. Qiu, T. Yao, D. Han, Y. Gao, J. Zhang, Y. Ma, H. Zhang and X. Yang, Nutrients available in the soil regulate the changes of soil microbial community alongside degradation of alpine meadows in the northeast of the Qinghai-Tibet Plateau. Science of The Total Environment, p.148363, 2021. Doi.org/10.1016/j.scitotenv.2021.148363
  135. J. Cuadros, Clay minerals interaction with microorganisms: a review. Clay Minerals, 52(2), pp.235-261, 2017. Doi.org/10.1180/claymin.2017.052.2.05
  136. Y. Feng, Y. Hu, J. Wu, J. Chen, K. Yrjälä and W. Yu, Change in microbial communities, soil enzyme and metabolic activity in a Torreya grandis plantation in response to root rot disease. Forest Ecology and Management, 432, pp.932-941, 2019. Doi.org/10.1016/j.foreco.2018.10.028
  137. W. Cao, R. Zhu, J. Gong, T. Yang, G. Zeng, B. Song, J. Li, S. Fang, M. Qin, L. Qin and Z. Chen, Evaluating the metabolic functional profiles of the microbial community and alfalfa (Medicago sativa) traits affected by the presence of carbon nanotubes and antimony in drained and waterlogged sediments. Journal of Hazardous Materials, 420, p.126593, 2021. Doi.org/10.1016/j.jhazmat.2021.126593
  138. K. Pedersen, Exploration of deep intraterrestrial microbial life: current perspectives. FEMS microbiology letters, 185(1), pp.9-16, 2000. Doi.org/10.1111/j.1574-6968.2000.tb09033.x
  139. S. Stroes-Gascoyne, C. J. Hamon and P. Maak, Limits to the use of highly compacted bentonite as a deterrent for microbiologically influenced corrosion in a nuclear fuel waste repository. Physics and Chemistry of the Earth, Parts A/B/C, 36(17-18), 1630-1638, 2011. Doi.org/10.1016/j.pce.2011.07.085
  140. A. Bengtsson and K. Pedersen, Microbial sulphide-producing activity in water saturated Wyoming MX-80, Asha and Calcigel bentonites at wet densities from 1500 to 2000 kg m− 3. Applied Clay Science, 137, pp.203-212, 2017. Doi.org/10.1016/j.clay.2016.12.024
  141. M. Lopez-Fernandez, N. Matschiavelli and M. L. Merroun, Bentonite geomicrobiology. The Microbiology of Nuclear Waste Disposal, pp.137-155, 2021. Doi.org/10.1016/B978-0-12-818695-4.00007-1
  142. M. Fomina and I. Skorochod, Microbial interaction with clay minerals and its environmental and biotechnological implications. Minerals, 10(10), p.861, 2020. Doi.org/10.3390/min10100861
  143. O. Oziegbe, E. J. Oziegbe and E. J. Ahuekwe, Environmental Significance of Microbe-Clay Interactions: A Mini-Review. In IOP Conference Series: Earth and Environmental Science, (Vol. 1428, No. 1, 012008). IOP Publishing, 2024. Doi:10.1088/1755-1315/1428/1/012008
  144. G. M. Gadd, Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology, 156, 609–643, 2010. Doi.org/10.1099/mic.0.037143-0
  145. G. L. Li, C. H. Zhou, S. Fiore, and W. H. Yu, Interactions between microorganisms and clay minerals: New insights and broader applications. Applied Clay Science, 177, pp.91-113, 2019. Doi.org/10.1016/j.clay.2019.04.025
  146. M. Fomina and G. M. Gadd, Metal sorption by biomass of melanin‐producing fungi grown in clay‐containing medium. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 78(1), pp.23-34, 2003.
  147. L. Zhang, G. M. Gadd and Z. Li, Microbial biomodification of clay minerals. Advances in Applied Microbiology, 114, 111-139, 2021. Doi.org/10.1016/bs.aambs.2020.07.002
  148. W. P. Gates, J. W. Stucki and R. J. Kirkpatrick, Structural properties of reduced Upton montmorillonite. Physics and Chemistry of Minerals, 23(8), pp.535-541, 1996. Doi.org/10.1007/BF00242003
  149. L. Pentráková, K. Su, M. Pentrák and J. W. Stucki, A review of microbial redox interactions with structural Fe in clay minerals. Clay Minerals, 48(3), pp.543-560, 2013. Doi.org/10.1180/claymin.2013.048.3.10
  150. V. A. Drits and A. Manceau, A model for the mechanism of Fe3+ to Fe2+ reduction in dioctahedral smectites. Clays and Clay Minerals, 48(2), pp.185-195, 2000. Doi.org/10.1346/CCMN.2000.0480204
  151. J. W. Stucki and J. E. Kostka, Microbial reduction of iron in smectite. Comptes Rendus Geoscience, 338(6-7), 468-475, 2006. Doi.org/10.1016/j.crte.2006.04.010
  152. H. Dong, D. P. Jaisi, J. Kim and G. Zhang, Microbe-clay mineral interactions. American Mineralogist, 94(11-12), pp.1505-1519, 2009. Doi.org/10.2138/am.2009.3246
  153. D. Liu, H. Dong, M. E. Bishop, J. Zhang, H. Wang, S. Xie, S. Wang, L. Huang and D. D. Eberl, Microbial reduction of structural iron in interstratified illite‐smectite minerals by a sulfate‐reducing bacterium. Geobiology, 10(2), pp.150-162, 2012. Doi.org/10.1111/j.1472-4669.2011.00307.x
  154. J. Zhang, H. Dong, D. Liu, T. B. Fischer, S. Wang and L. Huang, Microbial reduction of Fe (III) in illite–smectite minerals by methanogen Methanosarcina mazei. Chemical Geology, 292, 35-44, 2012. Doi.org/10.1016/j.chemgeo.2011.11.003
  155. E. Paget, L/ J. Monrozier and P. Simonet, Adsorption of DNA on clay minerals: protection against DNaseI and influence on gene transfer. FEMS Microbiology Letters, 97(1-2), pp.31-39, 1992. Doi.org/10.1111/j.1574-6968.1992.tb05435.x
  156. O. V. Lotareva and A. A. Prozorov, Effect of the clay minerals montmorillonite and kaolinite on the genetic transformation of competent Bacillus subtilis cells. Microbiology, 69(5), pp.571-574, 2000. Doi.org/10.1007/BF02756810
  157. M. O. Pereira, M. J. Vieira, and L. F. Melo, The effect of clay particles on the efficacy of a biocide. Water Science and Technology, 41(4-5), pp.61-64, 2000. Doi.org/10.2166/wst.2000.0426
  158. G. Stotzky, Influence of soil mineral colloids on metabolic processes, growth, adhesion, and ecology of microbes and viruses. Interactions of soil minerals with natural organics and microbes, 17, 305-428, 1986. Doi.org/10.2136/sssaspecpub17.c10
  159. B. Mueller, Experimental interactions between clay minerals and bacteria: a review. Pedosphere 25 (6), 799–810, 2015. Doi.org/10.1016/S1002-0160(15)30061-8
  160. Y. Zou, Y. Hu, Z. Shen, L. Yao, D. Tang, S. Zhang, S. Wang, B. Hu, G Zhao and X. Wang, Application of aluminosilicate clay mineral-based composites in photocatalysis. Journal of Environmental Sciences, 115, pp.190-214, 2022. Doi.org/10.1016/j.jes.2021.07.015
  161. B. Biswas, B. Sarkar, S. McClure and R. Naidu, Modified osmium tracer technique enables precise microscopic delineation of hydrocarbon-degrading bacteria in clay aggregates. Environmental Technology & Innovation, 7, pp.12-20, 2017. Doi.org/10.1016/j.eti.2016.11.002
  162. D. Biesgen, K. Frindte, S. Maarastawi and C. Knief, Clay content modulates differences in bacterial community structure in soil aggregates of different size. Geoderma, 376, p.11454, 2020. Doi.org/10.1016/j.geoderma.2020.114544
  163. Q. Zhou, Y. Liu, T. Li, H. Zhao, D. S. Alessi, W. Liu and K. O. Konhauser, Cadmium adsorption to clay-microbe aggregates: implications for marine heavy metals cycling. Geochimica et Cosmochimica Acta, 290, 124-136, 2020. Doi.org/10.1016/j.gca.2020.09.002
  164. A. Alimova, A. Katz, N. Steiner, E. Rudolph, H. Wei, J. C. Steiner, and P. Gottlieb, Bacteria-clay interaction: Structural changes in smectite induced during biofilm formation. Clay Clay Miner. 57: 205–212, 2009. Doi.org/10.1346/CCMN.2009.0570207
  165. B. G. Hopkins, D. A. Horneck, R. G. Stevens, J. W. Ellsworth and D. M. Sullivan, Managing irrigation water quality for crop production in the Pacific Northwest, 2007.
  166. C. Chenu, Influence of a fungal polysaccharide, scleroglucan, on clay microstructures. Soil Biology and Biochemistry, 21(2), pp.299-305, 1989. Doi.org/10.1016/0038-0717(89)90108-9
  167. J. M. Tisdall, S. E. Smith and P. Rengasamy, Aggregation of soil by fungal hyphae. Soil Research, 35(1), 55-60, 1997. Doi.org/10.1071/S96065
  168. S. A. Welch, W. W. Barker and J. F. Banfield, Microbial extracellular polysaccharides and plagioclase dissolution. Geochimica et Cosmochimica acta, 63(9), 1405-1419, 1999. Doi.org/10.1016/S0016-7037(99)00031-9
  169. E. F. Leifheit, S. D. Veresoglou, A. Lehmann, E. K. Morris, and M. C. Rillig, Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—a meta-analysis. Plant and Soil, 374(1), pp.523-537, 2014. Doi.org/10.1007/s11104-013-1899-2
  170. J. M. Dorioz, M. Robert and C. Chenu, The role of roots, fungi and bacteria on clay particle organization. An experimental approach. In Soil Structure/Soil Biota Interrelationships (pp. 179-194), 1993. Elsevier. Doi.org/10.1016/B978-0-444-81490-6.50019-4
  171. G. M. Gadd, Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological research, 111(1), pp.3-49, 2007. Doi.org/10.1016/j.mycres.2006.12.001
  172. S. Bonneville, M. M. Smits, A. Brown, J. Harrington, J. R. Leake, R. Brydson and L. G. Benning, Plant-driven fungal weathering: Early stages of mineral alteration at the nanometer scale. Geology, 37(7), pp.615-618, 2009. Doi.org/10.1130/G25699A.1
  173. S. Bonneville, D. J. Morgan, A. Schmalenberger, A. Bray, A. Brown, S. A. Banwart and L. G. Benning, Tree-mycorrhiza symbiosis accelerate mineral weathering: Evidences from nanometer-scale elemental fluxes at the hypha-mineral interface. Geochim. Cosmochim. Acta 75, 6988–7005, 2011. Doi.org/10.1016/j.gca.2011.08.041
  174. S. Shivhare and H. Mohanan, A review on subgrade soil stabilization using bio enzymes. Arabian Journal of Geosciences, 16(3), p.148, 2023. Doi.org/10.1007/s12517-023-11257-9
  175. M. Arabani, and M. M. Shalchian, A review of the use of bio-based substances in soil stabilization. Environment, development and sustainability, 26(6), pp.13685-13737, 2024. Doi.org/10.1007/s10668-023-03241-w
  176. V. Rajoria and S. Kaur, A review on stabilization of soil using bio-enzyme. International Journal of Research in Engineering and Technology, 3(1), pp.75-78, 2014.
  177. Y. Li, X. Fang, C. Shen, W. Jiang, S. Huang and M. Guoliang, Review of Bio-Enzyme for Soil Improvement. Biogeotechnics, p.100143, 2024. Doi.org/10.1016/j.bgtech.2024.100143
  178. H. X. Ren, C. P. Wen and X. Chen, Research on the Dynamic Elastic Modulus and Damping Ratio of Silty Soil Improved by Bioenzyme. Geotechnical and Geological Engineering, 42(2), pp.1505-1518, 2024. Doi.org/10.1007/s10706-023-02632-0
  179. O. Purwaningsih, R. A. HI Wahid, and P. B. Pamungkas, An enhancement of phytochemical content in red ginger (zingiber officinale var. rubrum rhizome) using eco-enzyme. Applied Ecology & Environmental Research, 21(6), 2023. DOI10.15666/aeer/2106_54535461
  180. S. P. Naik, T. R. Naik, M. I. Khan and A, M. C. Naik, Preparation of bio-enzyme and its effects on geotechnical characteristics of shedi soil. Int Res J Eng Technol, 7, pp.7645-7654, 2020.
  181. A. Tiwari, J. K. Sharma and V. Garg, Stabilization of expansive soil using terrazyme. In Proceedings of the Indian Geotechnical Conference 2019: IGC-2019 Volume III (pp. 113-125). Springer Singapore, 2021. Doi.org/10.1007/978-981-33-6444-8_10
  182. D. S. Aswar, M. N. Bajad and S. D. Ambadkar, Performance Evaluation of Terrazyme as Soil Stabilizer. Civil Engineering Infrastructures Journal, 56(2), pp.277-299, 2023. Doi.org/10.22059/ceij.2022.342784.1841
  183. S. Marathe, and A. R. Shankar, Investigations on bio-enzyme stabilized pavement subgrades of lateritic, lithomargic and blended soils. International Journal of Pavement Research and Technology, 16(1), pp.15-25, 2023. Doi.org/10.1007/s42947-021-00107-0
  184. N. Chandler, J. Palson and T. Burns, Capillary rise experiment to assess effectiveness of an enzyme soil stabilizer. Canadian Geotechnical Journal, 54(10), pp.1509-1517, 2017. Doi.org/10.1139/cgj-2016-0511
  185. V. M. Ramdas, P. Mandree, M. Mgangira, S. Mukaratirwa, R. Lalloo and S. Ramchuran, Review of current and future bio-based stabilisation products (enzymatic and polymeric) for road construction materials. Transportation Geotechnics, 27, p.100458, 2021. Doi.org/10.1016/j.trgeo.2020.100458
  186. G. P. Ganapathy, R. Gobinath, I. I. Akinwumi, S. Kovendiran, M. Thangaraj, N. Lokesh, S. Muhamed Anas, R. Arul Murugan, P. Yogeswaran and S. Hema, Bio-enzymatic stabilization of a soil having poor engineering properties. International Journal of Civil Engineering, 15, pp.401-409, 2017. Doi.org/10.1007/s40999-016-0056-8
  187. A. I. Dhatrak and P. V. Kolhe, October. Application of eco-friendly and smart materials in geotechnical engineering for subgrade stabilization: a review. In IOP Conference Series: Earth and Environmental Science (Vol. 1084, No. 1, p. 012035). IOP Publishing, 2022. DOI 10.1088/1755-1315/1084/1/012035
  188. V. Chaudhary, The Significance Of Agricultural Wastes In The Construction Sector. Journal of Survey in Fisheries Sciences, pp.4086-4104, 2023.
  189. T. G. Yashas Gowda, S. B. Nagaraju, M, Puttegowda, A. Verma, S. M. Rangappa and S. Siengchin, Biopolymer-based composites: an eco-friendly alternative from agricultural waste biomass. Journal of Composites Science, 7, p.242, 2023. Doi.org/10.3390/jcs7060242
  190. M. M. Shalchian and M. Arabani, A review of soil reinforcement with planetary fibers. Journal of Soil Science and Plant Nutrition, 22(4), pp.4496-4532, 2022. Doi.org/10.1007/s42729-022-01052-y
  191. J. Guo, J. Yi, Z. Pei and D. Feng, Application of plant fibers in subgrade engineering: current situation and challenges. Intelligent Transportation Infrastructure, 2, p.liad025, 2023. Doi.org/10.1093/iti/liad025
  192. M. S. Ahamed, P. Ravichandran and A. R. Krishnaraja, February. Natural fibers in concrete–A review. In IOP Conference Series: Materials Science and Engineering (Vol. 1055, No. 1, p. 012038). IOP Publishing, 2021, DOI 10.1088/1757-899X/1055/1/012038
  193. J. Ahmad and Z. Zhou, Mechanical properties of natural as well as synthetic fiber reinforced concrete: a review. Construction and Building Materials, 333, p.127353, 2022. Doi.org/10.1016/j.conbuildmat.2022.127353
  194. D. Thapliyal, S. Verma, P. Sen, R. Kumar, A. Thakur, A. K. Tiwari, D. Singh, G. D. Verros and R. K. Arya, Natural fibers composites: Origin, importance, consumption pattern, and challenges. Journal of Composites Science, 7(12), p.506, 2023. Doi.org/10.3390/jcs7120506
  195. Y. G. Thyavihalli Girijappa, S. Mavinkere Rangappa, J. Parameswaranpillai and S Siengchin, Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review. Frontiers in materials, 6, p.226, 2019. Doi.org/10.3389/fmats.2019.00226
  196. A. Lotfi, H. Li, D. V. Dao and G. Prusty, Natural fiber–reinforced composites: A review on material, manufacturing, and machinability. Journal of Thermoplastic Composite Materials, 34(2), pp.238-284, 2021. Doi.org/10.1177/0892705719844546
  197. D. P. Ferreira, J. Cruz and R. Fangueiro, Surface modification of natural fibers in polymer composites. In Green composites for automotive applications (pp. 3-41). Woodhead Publishing, 2019. Doi.org/10.1016/B978-0-08-102177-4.00001-X
  198. C. M. Suárez, P. R. Montejo and O. G. Junco, Effects of alkaline treatments on natural fibers. In Journal of Physics: Conference Series (Vol. 2046, No. 1, p. 012056). IOP Publishing, 2021. DOI 10.1088/1742-6596/2046/1/012056
  199. B. A. Koohestani, A. K. Darban, P. Mokhtari, E. R. Yilmaz and E. S. Darezereshki, Comparison of different natural fiber treatments: a literature review. International Journal of Environmental Science and Technology, 16, pp.629-642, 2019. Doi.org/10.1007/s13762-018-1890-9
  200. K. Y. Chan, L. Van, Zwieten, I. Meszaros, A. Downie, and S. Joseph, Agronomic values of greenwaste biochar as a soil amendment. Soil Research, 45(8), pp.629-634, 2007. Doi.org/10.1071/SR07109
  201. A. GuhaRay, M. Guoxiong, A. Sarkar, S. Bordoloi, A. Garg and S. Pattanayak, Geotechnical and chemical characterization of expansive clayey soil amended by biochar derived from invasive weed species Prosopis juliflora. Innovative Infrastructure Solutions, 4(1), pp.1-10, 2019. Doi.org/10.1007/s41062-019-0231-2
  202. B. A. Oni, O. Oziegbe and O. O. Olawole, Significance of biochar application to the environment and economy. Annals of Agricultural Sciences, 64(2), pp.222-236, 2019. Doi.org/10.1016/j.aoas.2019.12.006
  203. H. Wang, A. Garg, S. Huang and G. Mei, Mechanism of compacted biochar-amended expansive clay subjected to drying–wetting cycles: Simultaneous investigation of hydraulic and mechanical properties. Acta Geophysica, 68, 737-749, 2020. Doi.org/10.1007/s11600-020-00423-2
  204. Z. Pan, A. Garg, S. Huang and G. Mei, Swelling suppression mechanism of compacted expansive soil amended with animal and plant based biochar. Waste and Biomass Valorization, 12(5), pp.2653-2664, 2021. Doi.org/10.1007/s12649-020-01172-5
  205. Y. Zhang, K. Gu, C. Tang, Z. Shen, G. R. Narala and B. Shi, Effects of biochar on the compression and swelling characteristics of clayey soils. International Journal of Geosynthetics and Ground Engineering, 6, 1-8, 2020. Doi.org/10.1007/s40891-020-00206-1
  206. H. Wang, K. Zhang, L. Gan, J. Liu and G. Mei, Expansive soil-biochar-root-water-bacteria interaction: Investigation on crack development, water management and plant growth in green infrastructure. International Journal of Damage Mechanics, 30(4), 595-617, 2021. Doi.org/10.1177/1056789520974416
  207. B. A. Akinyemi and A. Adesina, Recent advancements in the use of biochar for cementitious applications: A review. Journal of Building Engineering, 32, p.101705, 2020. Doi.org/10.1016/j.jobe.2020.101705
  208. Y. Zhang, M. He, L. Wang, J. Yan, B. Ma, X. Zhu, Y. S. Ok, V. Mechtcherine and D. C. Tsang, Biochar as construction materials for achieving carbon neutrality. Biochar, 4(1), p.59, 2022. Doi.org/10.1007/s42773-022-00182-x
  209. A. E. Ramaji, A review on the soil stabilization using low-cost methods. Journal of Applied Sciences Research, 8(4), pp.2193-2196, 2012.
  210. M. K. Gueddouda, I. Goual, M. Lamara, A. Smaida and B. Mekarta, Chemical stabilization of expansive clays from Algeria. Global Journal of researches in engineering, 11(5), pp.1-7, 2011.
  211. M. B. Hampton and T. B. Edil, Strength gain of organic ground with cement-type binders. In Soil improvement for big digs (pp. 135-148). ASCE, 1998.
  212. J. K. Mitchell, Fundamentals of soil behavior, 2005.
  213. A. A. Firoozi, C. Guney Olgun, A. A. Firoozi and M. S. Baghini, Fundamentals of soil stabilization. International Journal of Geo-Engineering, 8, pp.1-16, 2017. Doi.org/10.1186/s40703-017-0064-9
  214. S. Saride, A. J. Puppala and S. R. Chikyala, Swell-shrink and strength behaviors of lime and cement stabilized expansive organic clays. Applied Clay Science, 85, pp.39-45, 2013. Doi.org/10.1016/j.clay.2013.09.008
  215. D. E. Slater, Potential expansive soils in Arabian Peninsula. Journal of Geotechnical Engineering, ASCE, 109: 744–746, 1983. Doi.org/10.1061/(ASCE)0733-9410(1983)109:5(744)
  216. R. Kiliç, Ö. Küçükali and K. Ulamiş, Stabilization of high plasticity clay with lime and gypsum (Ankara, Turkey). Bulletin of Engineering Geology and the Environment, 75(2), pp.735-744. 2016. Doi.org/10.1007/s10064-015-0757-2
  217. A. Kolos, V. Alpysova, G. Osipov and I. Levit, The Effect of Different Additives on the Swelling Process of Heavy Clays. In Transportation Soil Engineering in Cold Regions, Volume 2 (pp. 295-306). Springer, Singapore, 2020. Doi.org/10.1007/978-981-15-0454-9_31
  218. O. O. Amu, A. B. Fajobi and S. O. Afekhuai, Stabilizing potential of cement and fly ash mixture on expansive clay soil. Journal of applied sciences, 5(9), pp.1669-1673, 2005.
  219. E. A. Adeyanju and C. A. Okeke, November. Clay soil stabilization using cement kiln dust. In IOP Conference Series: Materials Science and Engineering (Vol. 640, No. 1, p. 012080). IOP Publishing, 2019. DOI 10.1088/1757-899X/640/1/012080
  220. T. Thyagaraj, S. M. Rao, P. Sai Suresh and U. Salini, Laboratory studies on stabilization of an expansive soil by lime precipitation technique. Journal of materials in civil engineering, 24(8), 1067-1075, 2012. Doi.org/10.1061/(ASCE)MT.1943-5533.0000483
  221. H. Zhao, J. Liu, J. Guo, C. Zhao and B. W, Gong, Reexamination of lime stabilization mechanisms of expansive clay. Journal of Materials in Civil Engineering, 27(1), 04014108, 2015. Doi.org/10.1061/(ASCE)MT.1943-5533.0001040
  222. J. James and P. K. Pandian, Plasticity, swell-shrink, and microstructure of phosphogypsum admixed lime stabilized expansive soil. Advances in Civil Engineering, 2016. Doi.org/10.1155/2016/9798456
  223. A. K. Sabat and P. K. Muni, Effects of limestone dust on geotechnical properties of an expansive soil. Int. J. Appl. Eng. Res, 10, pp.37724-37730, 2015.
  224. J. L. Pastor, R. Tomás, M. Cano, A. Riquelme and E. Gutiérrez, Evaluation of the improvement effect of limestone powder waste in the stabilization of swelling clayey soil. Sustainability, 11(3), p.679, 2019. Doi.org/10.3390/su11030679
  225. R. Ali, H. Khan and A. A. Shah, Expansive soil stabilization using marble dust and bagasse ash. Journal of Science and Research (IJSR), 3(6), pp.2812-2816, 2014.
  226. H. A. Abdelkader, M. Hussein and H. Ye, Influence of Waste Marble Dust on the Improvement of Expansive Clay Soils. Advances in Civil Engineering, 2021. Doi.org/10.1155/2021/3192122
  227. S. Arefin, H. Al-Dakheeli and R. Bulut, Stabilization of expansive soils using ionic stabilizer. Bulletin of Engineering Geology and the Environment, 80(5), pp.4025-4033, 2021. Doi.org/10.1007/s10064-021-02179-5
  228. M. Kianimehr, P. T. Shourijeh, S. M. Binesh, A. Mohammadinia and A. Arulrajah, Utilization of recycled concrete aggregates for light-stabilization of clay soils. Construction and Building Materials, 227, p.116792, 2019. Doi.org/10.1016/j.conbuildmat.2019.116792
  229. J. Loveday, Relative significance of electrolyte and cation exchange effects when gypsum is applied to a sodic clay soil. Soil Research, 14(3), pp.361-371, 1976. Doi.org/10.1071/SR9760361
  230. N. K. Ameta, D. G. M. Purohit, A. S. Wayal and D. Sandeep, Economics of stabilizing bentonite soil with lime-gypsum. Electronic Journal of Geotechnical Engineering, 12, 2007.
  231. I. Yilmaz and B. Civelekoglu, Gypsum: an additive for stabilization of swelling clay soils. Applied clay science, 44(1-2), 166-172, 2009. Doi.org/10.1016/j.clay.2009.01.020
  232. V. R. Murty and P. H. Krishna, Stabilisation of expansive clay bed using calcium chloride solution. Proceedings of the Institution of Civil Engineers-Ground Improvement, 10(1), pp.39-46, 2006. Doi.org/10.1680/grim.2006.10.1.39
  233. V. R. Murty and P. H. Krishna, Amelioration of expansive clay slopes using calcium chloride. Journal of materials in civil engineering, 19(1), pp.19-25, 2007. Doi.org/10.1061/(ASCE)0899-1561(2007)19:1(19)
  234. P. Dubey and R. Jain, Effect of common salt (NaCl) on engineering properties of black cotton soil. Int. J. Sci. Tech. Eng, 2(01), pp.64-68, 2015.
  235. T. O. Durotoye, J. O. Akinmusuru, S. A. Ogbiye and G. Bamigboye, Effect of common salt on the engineering properties of expansive soil. International Journal of Engineering and Technology, 6(7), pp.233-241., 2016.
  236. T. O. Durotoye, J. O. Akinmusuru and K. E. Ogundipe, Experimental datasets on engineering properties of expansive soil treated with common salt. Data in brief, 18, pp.1277-1281, 2018. Doi.org/10.1016/j.dib.2018.04.038
  237. W. R. Azzam, Reduction of the shrinkage–swelling potential with polymer nanocomposite stabilization. Journal of Applied Polymer Science, 123(1), pp.299-306, 2012. Doi.org/10.1002/app.33642
  238. F. Mousavi, E. Abdi and H. Rahimi, Effect of polymer stabilizer on swelling potential and CBR of forest road material. KSCE Journal of Civil Engineering, 18(7), pp.2064-2071, 2014. Doi.org/10.1007/s12205-014-0137-7
  239. M. Vishweshwaran, S. T. Soundarya and E. R. Sujatha, Geotechnical properties of β-glucan treated high swelling clay. In Proceedings of the Indian Geotechnical Conference 2019: IGC-2019 Volume III (pp. 171-181). Singapore: Springer Singapore, 2021. Doi.org/10.1007/978-981-33-6444-8_15
  240. M. T. Fernandez, S. Orlandi, M. Codevilla, T. M. Piqué and D. Manzanal, Performance of calcium lignosulfonate as a stabiliser of highly expansive clay. Transportation Geotechnics, 27, 100469, 2021. Doi.org/10.1016/j.trgeo.2020.100469
  241. A. Rana, I. Khan, S. Ali, T. A. Saleh and S. A. Khan, Controlling shale swelling and fluid loss properties of water-based drilling mud via ultrasonic impregnated SWCNTs/PVP nanocomposites. Energy & Fuels, 34(8), pp.9515-9523, 2020. Doi.org/10.1021/acs.energyfuels.0c01718
  242. M. S. Al-Yasiri and W. T. Al-Sallami, How the drilling fluids can be made more efficient by using nanomaterials. American Journal of Nano Research and Applications, 3(3), pp.41-45, 2015. Doi: 10.11648/j.nano.20150303.12
  243. K. Lv, H. Shen, J. Sun, X. Huang and H. Du, Acylated Inulin as a Potential Shale Hydration Inhibitor in Water Based Drilling Fluids for Wellbore Stabilization. Molecules, 29(7), p.1456, 2024. Doi.org/10.3390/molecules29071456
  244. A. S. Bains, E. S. Boek, P. V. Coveney, S. J. Williams and M. V. Akbar, Molecular modelling of the mechanism of action of organic clay-swelling inhibitors. Molecular Simulation, 26(2), pp.101-145, 2001. DOI: 10.1080/08927020108023012
  245. L. Zhou, Y. He, S. Gou, Q. Zhang, L. Liu, L. Tang, X. Zhou and M. Duan, Efficient inhibition of montmorillonite swelling through controlling flexibly structure of piperazine-based polyether Gemini quaternary ammonium salts. Chemical Engineering Journal, 383, p.123190, 2020. Doi.org/10.1016/j.cej.2019.123190
  246. J. L. Suter, P. V. Coveney, R. L. Anderson, H. C. Greenwell and S. Cliffe, Rule based design of clay-swelling inhibitors. Energy & Environmental Science, 4(11), 4572-4586, 2011. Doi.org/10.1039/C1EE01280K
  247. M. Murtaza, M. S. Kamal, S. M Hussain M. Mahmoud, Clay Swelling Inhibition Using Novel Cationic Gemini Surfactants with Different Spacers. Journal of Surfactants and Detergents, 23(5), pp.963-972, 2020. Doi.org/10.1002/jsde.12420
  248. Z. Tariq, M. S. Kamal, M. Mahmoud, M. Murtaza, A. Abdulraheem and X. Zhou, Dicationic surfactants as an additive in fracturing fluids to mitigate clay swelling: A petrophysical and rock mechanical assessment. ACS omega, 6(24), 15867-15877, 2021. Doi.org/10.1021/acsomega.1c01388
  249. M. Murtaza, H. M. Ahmad, M. S. Kamal, S. M. S. Hussain, M. Mahmoud and S. Patil, Evaluation of clay hydration and swelling inhibition using quaternary ammonium dicationic surfactant with phenyl linker. Molecules, 25(18), p.4333, 2020. Doi.org/10.3390/molecules25184333
  250. M. Ghasemi, A. Moslemizadeh, K. Shahbazi, O. Mohammadzadeh, S. Zendehboudi and S. Jafari, Primary evaluation of a natural surfactant for inhibiting clay swelling. Journal of Petroleum Science and Engineering, 178, pp.878-891, 2019. Doi.org/10.1016/j.petrol.2019.02.073
  251. M. M. Mortland, Clay-organic complexes and interactions. In Advances in agronomy (Vol. 22, pp. 75-117). Academic Press, 1970. Doi.org/10.1016/S0065-2113(08)60266-7
  252. A. K. Quainoo, B. M. Negash, C. B. Bavoh, A. Idris, H. B. Shahpin and and A. D. Yaw, Inhibition Impact of Amino Acids on Swelling Clays: An Experimental and COSMO-RS Simulation Evaluation. Energy & Fuels, 34(11), pp.13985-14000, 2020. Doi.org/10.1021/acs.energyfuels.0c02766
  253. A. K. Quainoo, B. M. Negash, C. B. Bavoh and A. Idris, Natural amino acids as potential swelling and dispersion inhibitors for montmorillonite-rich shale formations. Journal of Petroleum Science and Engineering, 196, p.107664, 2021. Doi.org/10.1016/j.petrol.2020.107664
  254. A. Rezaei and S. R. Shadizadeh, State-of-the-art drilling fluid made of produced formation water for prevention of clay swelling: Experimental Investigation. Chemical Engineering Research and Design, 170, pp.350-365, 2021. Doi.org/10.1016/j.cherd.2021.04.012
  255. R. de Carvalho Balaban, E. L. F. Vidal and M. R. Borges, Design of experiments to evaluate clay swelling inhibition by different combinations of organic compounds and inorganic salts for application in water base drilling fluids. Applied Clay Science, 105, pp.124-130, 2015. Doi.org/10.1016/j.clay.2014.12.029
  256. Y. An and P. Yu, A strong inhibition of polyethyleneimine as shale inhibitor in drilling fluid. Journal of Petroleum Science and Engineering, 161, pp.1-8, 2018. Doi.org/10.1016/j.petrol.2017.11.029
  257. G. A. Archibong, E. U. Sunday, J. C. Akudike, O. C. Okeke and C. Amadi, A review of the principles and methods of soil stabilization. International Journal of Advanced Academic Research| Sciences, 6(3), pp.2488-9849, 2020.
  258. S. K. Gary, Geotechnical Engineering. Soil Mechanics & Foundation Engineering, 2007.
  259. M. Sandelin, Evaluation of dynamic compaction method and rapid impact compaction method for soil improvement, 2018.
  260. O. P. Minaev, Full Set of Equipment for Soil Compaction and Quality Control in Constructing Tall Hydroelectric Dams. Power Technology and Engineering, pp.1-9, 2024. Doi.org/10.1007/s10749-024-01831-w
  261. K. Onyelowe, D. B. Van, C. Igboayaka, F. Orji and H. Ugwuanyi, Rheology of mechanical properties of soft soil and stabilization protocols in the developing countries-Nigeria. Materials Science for Energy Technologies, 2(1), pp.8-14, 2019. Doi.org/10.1016/j.mset.2018.10.001
  262. C. C. Ikeagwuani D. C. Nwonu, Emerging trends in expansive soil stabilisation: A review. Journal of rock mechanics and geotechnical engineering, 11(2), pp.423-440, 2019. Doi.org/10.1016/j.jrmge.2018.08.013
  263. N. Sarier, E. Onder and S. Ersoy, The modification of Na-montmorillonite by salts of fatty acids: An easy intercalation process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 371(1-3), pp.40-49, 2010. Doi.org/10.1016/j.colsurfa.2010.08.061
  264. R. Zhu, Q. Zhou, J. Zhu, Y. Xi and H. He, Organo-clays as sorbents of hydrophobic organic contaminants: sorptive characteristics and approaches to enhancing sorption capacity. Clays and Clay Minerals, 63(3), 199-221, 2015. Doi.org/10.1346/CCMN.2015.0630304
  265. S. F. A. Shattar, N. A. Zakaria, and K. Y. Foo, Feasibility of montmorillonite-assisted adsorption process for the effective treatment of organo-pesticides. Desalination and Water Treatment, 57(29), pp.13645-13677, 2016. Doi.org/10.1080/19443994.2015.1065439
  266. S. Ray, S. Y. Quek, A. Easteal and X. D. Chen, The potential use of polymer-clay nanocomposites in food packaging. International Journal of Food Engineering, 2(4), 2006. Doi.org/10.2202/1556-3758.1149
  267. C. Lee, K. Lee, H, Choi and H. P. Choi, Characteristics of thermally-enhanced bentonite grouts for geothermal heat exchanger in South Korea. Science in China Series E: Technological Sciences, 53(1), pp.123-128, 2010. Doi.org/10.1007/s11431-009-0413-9
  268. J. C. Hesse, M. Schedel, R. Diedel and I. Sass, Influence of swelling and non-swelling clays on the thermal properties of grouting materials for borehole heat exchangers. Applied Clay Science, 210, p.106154, 2021. Doi.org/10.1016/j.clay.2021.106154
  269. J. H. Westsik, L. A. Bray, F. N. Hodges and E. J. Wheelwright, Permeability, swelling and radionuclide retardation properties of candidate backfill materials. MRS Online Proceedings Library (OPL), 6, 329, 1981. Doi.org/10.1557/PROC-6-329
  270. D. E. Moore, C. A. Morrow and J. D. Byerlee, Use of swelling clays to reduce permeability and its potential application to nuclear waste repository sealing. Geophysical Research Letters, 9(9), pp.1009-1012, 1982. Doi.org/10.1029/GL009i009p01009
  271. S. S. Metwally and R. R. Ayoub, Modification of natural bentonite using a chelating agent for sorption of 60Co radionuclide from aqueous solution. Applied Clay Science, 126, pp.33-40, 2016. Doi.org/10.1016/j.clay.2016.02.021
  272. I. A. Shabtai and Y. G. Mishael, Polycyclodextrin–clay composites: regenerable dual-site sorbents for bisphenol a removal from treated wastewater. ACS applied materials & interfaces, 10(32), pp.27088-27097, 2018. Doi.org/10.1021/acsami.8b09715
  273. L. Laloui, B. François, M. Nuth, H. Peron and A. Koliji, A thermo-hydro-mechanical stress-strain framework for modelling the performance of clay barriers in deep geological repositories for radioactive waste. In Unsaturated Soils. Advances in Geo- Engineering (pp. 79-96). CRC Press, 2008.
  274. F. Claret, N. Marty, C. Tournassat, Y. Xiao, F. Whitaker, T. Xu and C. Steefel, Modeling the long-term stability of multi-barrier systems for nuclear waste disposal in geological clay formations. Reactive Transport Modeling: Applications in Subsurface Energy, and Environmental Problems. John Wiley & Sons, Ltd Chichester, UK, pp.395-451, 2018. Doi.org/10.1002/9781119060031.ch8
  275. P. Delage, Microstructure features in the behaviour of engineered barriers for nuclear waste disposal. In Experimental unsaturated soil mechanics (pp. 11-32). Springer, Berlin, Heidelberg, 2007. Doi.org/10.1007/3-540-69873-6_2
  276. P. Delage, Y. J. Cui and A. M. Tang, Clays in radioactive waste disposal. Journal of Rock Mechanics and Geotechnical Engineering, 2(2), pp.111-123, 2010. Doi.org/10.3724/SP.J.1235.2010.00111
  277. R. Dohrmann, S. Kaufhold and B. Lundqvist, The role of clays for safe storage of nuclear waste. In Developments in Clay Science (Vol. 5, pp. 677-710). Elsevier, 2013. Doi.org/10.1016/B978-0-08-098259-5.00024-X
  278. S. Y. Lee and R. W. Tank, Role of clays in the disposal of nuclear waste: a review. Applied clay science, 1(1-2), pp.145-162, 1985. Doi.org/10.1016/0169-1317(85)90570-8
  279. F. Karlsson, Utilization of certain chemical and physical properties of smectite for isolation of radioactive waste in Sweden. Sciences Géologiques, bulletins et mémoires, 87(1), pp.65-73, 1990.
  280. F. Plas, M. Jorda, R. Atabek, J. C. Robinet, J. M. Hoorelbeke and J. Bellet, What will be the engineered barriers for deep disposal of high level radioactive wastes in the future. In High level radioactive waste management, 1990.
  281. R. Kandel, Potential of using aluminosilicates for removal of heavy metals and mycotoxins from feed and water (Master's thesis, Norwegian University of Life Sciences, Ås), 2018.
  282. C. T. Elliott, L. Connolly and O. Kolawole, Potential adverse effects on animal health and performance caused by the addition of mineral adsorbents to feeds to reduce mycotoxin exposure. Mycotoxin research, 36(1), pp.115-126, 2020. Doi.org/10.1007/s12550-019-00375-7
  283. J. H. Liu, W. K. Cai, N. Khatoon, W. H. Yu and C. H. Zhou, On how montmorillonite as an ingredient in animal feed functions. Applied Clay Science, 202, p.105963, 2021. Doi.org/10.1016/j.clay.2020.105963
  284. N. Parvin, M. Sandin and M. Larsbo, Seedbed consolidation and surface sealing for soils of different texture and soil organic carbon contents. Soil and Tillage Research, 206, p.104849, 2021. Doi.org/10.1016/j.still.2020.104849
  285. K. Karthikeyan, N. Kumar, A. Govind and J. Prasad, Assessment of Soil Site Suitability for Cotton Farming in the Semi-arid Regions of Central India: An Analytic Hierarchy Process. Journal of the Indian Society of Soil Science, 67(4), pp.402-410, 2019. DOI:10.5958/0974-0228.2019.00043.4
  286. B. R. D. Santos, F. B. Bacalhau, T. dos Santos Pereira, C. F. Souza and R. Faez, Chitosan-montmorillonite microspheres: a sustainable fertilizer delivery system. Carbohydrate polymers, 127, pp.340-346, 2015. Doi.org/10.1016/j.carbpol.2015.03.064
  287. T. El Assimi, O. Lakbita, A. El Meziane, M. Khouloud, A. Dahchour, R. Beniazza, R. Boulif, M. Raihane and M. Lahcini, Sustainable coating material based on chitosan-clay composite and paraffin wax for slow-release DAP fertilizer. International Journal of Biological Macromolecules, 161, pp.492-502, 2020. Doi.org/10.1016/j.ijbiomac.2020.06.074
  288. L. L. Messa, C. F. Souza and R. Faez, Spray-dried potassium nitrate-containing chitosan/montmorillonite microparticles as potential enhanced efficiency fertilizer. Polymer Testing, 81, p.106196, 2020. Doi.org/10.1016/j.polymertesting.2019.106196
  289. A. Bortolin, F. A. Aouada, L. H. Mattoso and C. Ribeiro, Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. Journal of agricultural and food chemistry, 61(31), pp.7431-7439, 2013. Doi.org/10.1021/jf401273n
  290. S. I. Sempeho, H. T. Kim, E. Mubofu and A. Hilonga, Meticulous overview on the controlled release fertilizers. Advances in Chemistry, 2014(1), p.363071, 2014. Doi.org/10.1155/2014/363071
  291. S. Savci, Investigation of effect of chemical fertilizers on environment. Apcbee Procedia, 1, pp.287-292, 2012. Doi.org/10.1016/j.apcbee.2012.03.047
  292. A. Yadav, K. Yadav and K. A. Abd-Elsalam, Nanofertilizers: types, delivery and advantages in agricultural sustainability. Agrochemicals, 2(2), pp.296-336, 2023. Doi.org/10.3390/agrochemicals2020019
  293. M. Rudmin, S. Banerjee, B. Makarov, K. Ibraeva and A. Konstantinov, A. Mechanical activation of smectite-based nanocomposites for creation of smart fertilizers. Applied Sciences, 12(2), p.809, 2022. Doi.org/10.3390/app12020809
  294. B. D. Kevadiya and H. C. Bajaj, The layered silicate, montmorillonite (MMT) as a drug delivery carrier. In Key Engineering Materials (Vol. 571, pp. 111-132). Trans Tech Publications Ltd, 2013. Doi.org/10.4028/www.scientific.net/KEM.571.111
  295. R. I. Iliescu, E. Andronescu, C. D. Ghitulica, G. Voicu, A. Ficai and M. Hoteteu, Montmorillonite–alginate nanocomposite as a drug delivery system–incorporation and in vitro release of irinotecan. International journal of pharmaceutics, 463(2), pp.184-192, 2014. Doi.org/10.1016/j.ijpharm.2013.08.043
  296. J. H. Park, H. J. Shin, M. H. Kim, J. S. Kim, N. Kang, J. Y. Lee, K. T. Kim, J. I. Lee and D. D. Kim, Application of montmorillonite in bentonite as a pharmaceutical excipient in drug delivery systems. Journal of Pharmaceutical Investigation, 46(4), pp.363-375, 2016. Doi.org/10.1007/s40005-016-0258-8
  297. A. Rivera, L. Valdés, J. Jiménez, I. Pérez, A. Lam, E. Altshuler, L. C. de Ménorval, J. O. Fossum, E. L. Hansen and Z. Rozynek, Smectite as ciprofloxacin delivery system: Intercalation and temperature-controlled release properties. Applied Clay Science, 124, pp.150-156, 2016. Doi.org/10.1016/j.clay.2016.02.006
  298. J. Dong, Z. Cheng, S. Tan and Q. Zhu, Clay nanoparticles as pharmaceutical carriers in drug delivery systems. Expert opinion on drug delivery, 18(6), pp.695-714, 2020. Doi.org/10.1080/17425247.2021.1862792
  299. N. Khatoon, M. Q. Chu and C. H. Zhou, Nanoclay-based drug delivery systems and their therapeutic potentials. Journal of Materials Chemistry B, 8(33), pp.7335-7351, 2020. Doi.org/10.1039/D0TB01031F
  300. H. Yan, X. Chen, C. Bao, J. Yi, M. Lei, C. Ke, W. Zhang and Q. Lin, Synthesis and assessment of CTAB and NPE modified organo-montmorillonite for the fabrication of organo-montmorillonite/alginate based hydrophobic pharmaceutical controlled-release formulation. Colloids and Surfaces B: Biointerfaces, 191, p.110983, 2020. Doi.org/10.1016/j.colsurfb.2020.110983
  301. C. Luo, Q. Yang, X. Lin, C. Qi and G. Li, Preparation and drug release property of tanshinone IIA loaded chitosan-montmorillonite microspheres. International journal of biological macromolecules, 125, pp.721-729, 2019. Doi.org/10.1016/j.ijbiomac.2018.12.072
  302. Y. Yang, X. Wang, F. Yang, B. Mu and A. Wang, Progress and future prospects of hemostatic materials based on nanostructured clay minerals. Biomaterials science, 11(23), pp.7469-7488, 2023. Doi.org/10.1039/D3BM01326J
  303. Y. Tan, Q. Yang, M. Zheng, M. T. Sarwar and H. Yang, Multifunctional nanoclay‐based hemostatic materials for wound healing: a review. Advanced Healthcare Materials, 13(6), p.2302700, 2024. Doi.org/10.1002/adhm.202302700
  304. N. Selvasudha, U. M. Dhanalekshmi, S. Krishnaraj, Y. H. Sundar, N. S. D. Devi and I. Sarathchandiran, Multifunctional clay in pharmaceuticals. In Clay science and technology. London, UK: IntechOpen, 2020.
  305. W. Xie, Y. Chen and H. Yang, Layered clay minerals in cancer therapy: recent progress and prospects. Small, 19(34), p.2300842, 2023. Doi.org/10.1002/smll.202300842
  306. H. A. Fetouh, H. Abdel-Hamid, A. A. H. Zaghloul, A. E. Ghadban and A. M. Ismail, Formulation of promising antibacterial, anticancer, biocompatible and bioactive biomaterial as therapeutic drug delivery system for biologically active compound loaded on clay polymer. Polymer Bulletin, 80(9), pp.9989-10013, 2023. Doi.org/10.1007/s00289-022-04526-2
  307. Z. Yang, T. Ye, F. Ma, X. Zhao, L. Yang, G. Dou, H. Gan, Z. Wu, X. Zhu, R. Gu and Z. Meng, Preparation of chitosan/clay composites for safe and effective hemorrhage control. Molecules, 27(8), p.2571, 2022. Doi.org/10.3390/molecules27082571
  308. Y. Ouyang, Y. Zhao, X. Zheng, Y. Zhang, J. Zhao, S. Wang and Y. Gu, Rapidly degrading and mussel-inspired multifunctional carboxymethyl chitosan/montmorillonite hydrogel for wound hemostasis. International Journal of Biological Macromolecules, 242, p.124960, 2023. Doi.org/10.1016/j.ijbiomac.2023.124960
  309. A. Damato, F. Vianello, E. Novelli, S. Balzan, M. Gianesella, E. Giaretta and G. Gabai, Comprehensive review on the interactions of clay minerals with animal physiology and production. Frontiers in veterinary science, 9, p.889612, 2022. Doi: 10.3389/fvets.2022.889612
  310. D. Dupont and B. Vernisse, Anti-diarrheal effects of diosmectite in the treatment of acute diarrhea in children: a review. Pediatric Drugs, 11, pp.89-99, 2009. Doi.org/10.2165/00148581-200911020-00001
  311. F. Khediri, A. I. Mrad, M. Azzouz, H. Doughi, T. Najjar, H. Mathiex-Fortunet, P. Garnier and A. Cortot, Efficacy of Diosmectite (Smecta)® in the Treatment of Acute Watery Diarrhoea in Adults: A Multicentre, Randomized, Double‐Blind, Placebo‐Controlled, Parallel Group Study. Gastroenterology research and practice, 2011(1), p.783196, 2011. Doi.org/10.1155/2011/783196