Skip to main navigation menu Skip to main content Skip to site footer

Articles

CJPLS: VOL. 13, NO. 1, JUNE 2025

On the effect of saturation factor and effective contact rate on the transmission dynamics of Ebola

Submitted
April 27, 2025
Published
2025-05-14

Abstract

In this study we propose a modified SEQIR model to further investigate the dynamics of Ebola virus. A deterministic and stochastic framework was considered to verify the implication(s) of saturation coefficient on the transmission dynamics of Ebola. Necessary qualitative analysis: Existence and Uniqueness, boundedness, local and global stability, at disease - free equilibrium were considered to validate the epidemiological feasibility of the model. The reproduction number was found to be less than unity. Furthermore, the effective contact rate of the disease and saturation coefficient rates were varied within the model to validate the effects of these parameters on the transmission dynamics of the infection and results from numerical simulations using assumed (fitted) values indicate the overall effects of the saturation coefficient rate in phasing out the disease in the long run when moderated.

References

  1. G.C.E. Mbah, I. S. Onah, O. O. Ahman, O. C., Collins, C. C. Asogwa, and C. Okoye, ‘’Mathematical
  2. modelling approach of the study of Ebola virus disease transmission dynamics in a developing country,’Afr. J. Infect. Dis. 17, no. 1, (2023): 10–26.
  3. K. Birmingham, and S. Cooney, ‘’Ebola: Small, but real progress,’’ Nat. Med. 8 (2012): https://doi.org/10.1038/nm0402-313
  4. J. O. Agbomola, and A. C. Loyinmi, ‘’Modelling the impact of some control strategies on the transmission dynamics of Ebola virus in human-bat population: An optimal control analysis,’’ Heliyon, 8, (2022): https://doi.org/10.1016/j.heliyon.2022.e12121
  5. R. Young, ‘’Composite wave interactions and the collapse of vacuums in gas dynamics,’’ Journal of Differential Equations, 252 (2012): 5129-5154, https://doi.org/10.1016/j.jde.2012.01.028
  6. S. O. Gbodogbe, ‘’Harmonizing epidemic dynamics: A fractional calculus approach to optimal control strategies for cholera transmission,’’ Scientific African, 27 (2025): https://doi.org/10.1016/j.sciaf.2025.e02545
  7. Center for Disease Control and Prevention (CDC), “Ebola Disease Basics”
  8. https://www.cdc.gov/vhf/ebola/history/2014-2016- outbreak/index.html.(2024).
  9. G. Chowell, N. W. Hengartner, C. Castillo-Chavez, P. W. Fenimore, and J.M. Hyman, ‘’The basic reproductive number of Ebola and the effects of public health measures: The cases of Congo and Uganda,’’ J. Theoret. Biol., 229, no.1 (2004): 119–126. https://doi.org/10.1016/j.jtbi.2004.03.006
  10. J. Breman, P. Piot, K. Johnson, and S. Pattyn, ‘’The epidemiology of Ebola hemorrhagic fever in Zaire, 1976’’ Medicine, Environmental Science, (1978): 85–97. https://api.semanticscholar.org/CorpusID:80009505
  11. J. Agbomola, and A. Loyinmi, ’A mathematical model for the dynamic behavior of Ebola transmission in human-bat population: implication of immediate discharge of recovered individuals. Preprints, (2022): https://doi.org/10.21203/rs.3.rs-1399224/v1.
  12. K. O. Idowu, and A. C. Loyinmi, ’Impact of contaminated surfaces on the transmission dynamics of corona virus disease (Covid-19),’’Biomed J. Sci. Tech. Res., 51 (2023): 42280-90. https://doi.org/10.26717/BJSTR 2023.51008046
  13. O. K. Idowu, and A. C. Loyinmi, ’Qualitative analysis of the transmission dynamics and optimal control of covid-19,’’ EDUCATUM Journal of Science, Mathematics and Technology, 10: no.1 (2023): 54-70. https://doi.org/10.37134/ejsmt.vol10.1.7.2023
  14. A. C. Loyinmi, and S. O. Gbodogbe, “Epidemiological viability and control of rotavirus: A mathematical modelling approach” FNAS journal of Scientific Innovations, 6, no. 2 (2025): 18-43.
  15. A. C. Loyinmi, T. K. Akinfe, and A. A. Ojo, “Qualitative analysis and dynamical behavior of a Lassa haemorrhagic fever model with exposed rodents and saturated incidence rate,’’ Sci. African, 14 (2021): e01028. https://doi.org/10.1016/j.sciaf.2021.e01028
  16. S.O. Adewale, I. A. Olopade, G. A. Adeniran, I. T. Mohammed, and S. O. Ajao, ‘’Mathematical analysis of effects of isolation on Ebola transmission dynamics,’’ Research Journal of Mathematics. 2 (2015): 2349-5375.
  17. R. T. Abah, A. B. Zhiri, K. Osinubi, and A. Adeniji, ’Mathematical analysis and simulation of Ebola virus disease spread incorporating mitigation measures,’ Franklin Open. 6 (2024): https://doi.org/10.1016/j.fraope.2023.100066
  18. A.C Loyinmi, and A. L. Ijaola, ‘’Investigating the effects of some controls measures on the dynamics of diphtheria infection using fractional order model,’ Mathematics and Computational Sciences, 5, no.4 (2024): 26-47. 10.30511/MCS.2024.2032110.1183
  19. A. C. Loyinmi, and S. O. Gbodogbe, ‘’Mathematical modelling and control strategies for Nipah virus transmission incorporating Bat – to – pig –to – human pathway,’’ EDUCATUM Journal of Science, Mathematics and Technology, 11, no.1, (2024): 54-80. https://doi.org/10.37134/ejsmt.vol11.1.7.2024
  20. A. C. Loyinmi, A. S. Ajala, and L. I. Alani, ‘’Analysis of the effect of vaccination, efficient surveillance and treatment on the transmission dynamics of cholera,’’ Al-Bahir journal for Engineering and Pure Sciences, 5, (2024): 94 – 107. https://doi.org/10.55810/2313-0083.1070
  21. A. C. Loyinmi, S. O. Gbodogbe, and K. O. Idowu, ’On the interaction of the human immune system with foreign body: mathematical modelling approach,’’ Kathmandu University Journal of Science, Engineering and Technology, 17, no.2 (2023): 1-17. https://journals.ku.edu.np/kuset/article/view/137
  22. C.E. Madubueze, A. R Kimbir, and T. Aboiyar, “Global stability of Ebola virus disease model with contact tracing and quarantine” Appl. Math.: Int. J., 13, no. 1 (2018).
  23. A. J. Adebisi, M. O. Olayiwola, I. A. Adediran, and A.I. Alaje, ‘’A novel mathematical model and homotopy pertutbation method analyzing the effects of –saturated incidence and treatment rate on Covid-19 eradication,’’ Iranian Journal of Science, 48 (2024): 625-636. https://doi.org/10.1007/s40995-024-01608-w
  24. W.O. Kermack, and A. G. McKendrick, ’A contribution to the mathematical theory of epidemics,’ Proc. R. Soc. Lond. Series A. 115, no. 772, (1927): 700 –721.
  25. A. C. Loyinmi, and A. L. Ijaola, ‘’Fractional order model of dynamical behavior and qualitative analysis of Anthrax with infected vector and saturation,’’ Int. J of Math. Anal. And Modelling, 7, no. 2, (2024): 224-264.
  26. C. L. Althaus, ‘’Estimating the reproduction number of Ebola virus (EBOV) during the 2014 outbreak
  27. In West Africa,’’ PLoS Currents, https://doi.org/10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288
  28. J. Astacio, D. Briere, M. Guillen, J. Martinez, F.
  29. Rodriguez, and N. Valenzuela-Campos, ’Mathematical models to study the outbreaks of Ebola,’ Biometrics Unit Technical Reports; Number BU-1365-M, (1996). https://hdl.handle.net/1813/31962
  30. A. C. Loyinmi, ’A fractional order model for Zika virus
  31. transmission dynamics: analysis, control strategies, and simulation insights,’ FNAS journal of scientific Innovations, 6, no.1 (2024): 84-108.
  32. S. Edward, E. M. Lusekelo, D. M. Ndidi, and E. Simanjilo, ‘’Mathematical modelling of the transmission dynamics of Ebola virus disease with control strategies,’’ Int. J. Sci.: Basic Appl. Res. 33, no. 1 (2017): 112–130.
  33. O. Diekmann, and J. A. P. Heesterbeek, ‘’Mathematical Epidemiology of Infectious Diseases: Model building Analysis and Interpretation,’ John Wiley & Sons, 5, (2000).