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Abstract:  
A new numerical scheme via a Chebyshev series method is used to solve a family of linear fractional integro-differential equations 

especially the Fredholm and Volterra equations. The linear fractional integro-differential equation can be transformed into a system of 

equations for the unknown function itself and its m derivatives by taking into account the mth order Chebyshev series of the unknown 

function at any point. Using MATLAB 2009 software, this approach provides a straightforward and closed-form solution to a linear 

fractional integro-differential equation. Finally, examples are provided to illustrate comparisons between the proposed Chebyshev series 

solution and some existing methods in this direction. The results obtained performed better in terms of quick convergence and stability 

over the existing Taylor series expansion methodologies. 

Keywords: Chebyshev series, Fredhvolm equations, fractional, Integro-differential, Volterra  

1. Introduction 

UE to their widespread use, numerical studies on fractional 

differential equations have been very influential [1]. Since 

we lack the separation of variables method and product rules 

that are often available for differential equations of integer 

order, it has proven difficult to compute the solution to 

fractional differential equations [2]. Different approaches to 

computing the solution have been put forth by numerous 

scholars in the field of fractional differential equations and 

fractional integro-differential equations. Fractional calculus 

and fractional differential equations have both attracted an 

increasing amount of attention lately. Investigations into the 

existence and distinctiveness/uniqueness of fractional 

differential equations solutions have been conducted [3, 4]. 

Transform method [5], homotopy analysis [6], Adomian 

decomposition method [7], variational iteration method [8], 

homotopy perturbation method [8], collocation method [9, 10]; 

and eulerian polynomial basis functions [11] are just a few to 

these. The iterated Galerkin methods are found in [12]. 

Additionally, mixed interpolation collocation techniques have 

been found in [13] for first order and second-order Volterra 

linear integro-differential equations. The interpolation 

collocation method was created by Hu [14] to solve Fredholm 

linear integro-differential equations. Rashed addressed a 

particular kind of integro-differential equation with integral 

derivatives [15]. Chebyshev wavelet of second order were used 

by Setia et. al [16] to solve the universal Fredholm-Volterra 

fractional Integro-Differential equation with nonlocal boundary 

conditions. 

Additionally, Kanwal and Liu [17] introduced the Taylor 

expansion method for resolving Volterra integral equations, and 

Sezer [18, 19] expanded this approach to include both Volterra 

integral equations and differential equations. When solving 

linear Volterra-Fredholm integro-differential equations, 

Yalcinbas and Sezer’s [20, 21] method was extended to include 

nonlinear Volterra-Fredholm integral equations. They also used 

this method to solve a high-order linear differential equation 

system  

In this paper, we analyze a class of fractional derivatives 

linear integro-differential equations of the form 
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subjected to the initial conditions 

   y(k)(0) = ck, k = 0, 1, . . . , n − 1, n − 1 < α ≤ n, n ∈ N, (2) 

 

where y(k)(t) stands for the kth-order derivative of y(t). These 

linear integro-differential equations are generalizations of the 

Volterra, Fredholm, and linear fractional differential equations. 

These kinds of equations appear in numerous mathematical 

physics modeling issues, such as heat conduction in memory-

containing materials. These kinds of equations appear in a 

variety of mathematical physics, modeling issues, including 

heat conduction in memory-rich materials. These equations are 

also used in issues involving conduction, convection, and 

radiation all together. The aforementioned equation reduces to 

a linear fractional differential equation when λ1 = 0, λ2 = 0. 

Additionally, Eq. (1) becomes a linear integro-differential 

equation for N, and numerous writers have examined this 

equation’s numerical solutions in great detail. 

In this study Eq. (1) shall be converted into a system of linear 

equations in the unknown function and its derivatives by using 

the Chebyshev series of the unknown function at any location 

with the aim to demonstrate the efficiency and effectiveness of 

the desired results. The mth-order approximation of the desired 

solution, which is exact for a polynomial of degree less than or 

equal to m, can be obtained by roughly solving the resulting 

system.  Four examples were utilized to demonstrate the 

precision and efficacy of the suggested strategy in the end. 
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2. MOTIVATION 

The family of linear fractional integro-differential equation 

that involve the Fredholm and Volterra equations have been 

extensively explored by using so many numerical schemes, 

such as the Taylor series expansion, Homotopy analysis method 

just to mention few out of many schemes. However, the 

Chebyshev series in this study aims to provide interesting 

solutions that help to address the quest for quick convergence 

and stability. 

2.1 Basic definitions 

Following are some fundamental definitions and 

characteristics of the second-kind Chebyshev polynomial and 

fractional calculus: 

Definition 1: The second kind of Chebyshev polynomials 

Ti(x) are defined by 
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where n = 1, 2, . . . 

These are orthogonal polynomials to the weight function

21)( xxw −=  on [0, 1]. The dilated and translated weight 

function can be defined as 
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for a given value of k and n appearing in the second kind of 

Chebyshev series expansion. 
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where ))(),(( ,, xxuc inin = in which .,.  denotes the 

inner product ]1,0[)( 2
k
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Lxw  .  

The truncated series of [5] can be defined by 
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where 
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Definition 2 [21] Dq (q > 0 real) represents the fractional 
differential operator of order q in terms of Riemann–Liouville, 

defined by [3] 
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where n ∈ N, Γ (∗) denotes the Gamma function. When q = n, 

the fractional differential reduces to the ordinary nth derivative 

of y(t) to t. 

Definition 3.[21] Iq denotes the fractional integral operator of 

order q in the sense of Riemann–Liouville, defined as 
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Basic properties of the fractional operator are listed below [21]: 

for f ∈ Cα, α ≥ −1, μ ≥ 1, η ≥ 0, β > −1: 

1. Iμ ∈ C0, 

2. IηIδ f (x) = Iδ Iηf (x), 

3. Iδ Iηf (x) = Iδ+ηf (x), 

4. DδDηf (x) = Dδ+ηf (x), 

5. Dδ Iδ f (x) = f (x), 

6.
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3. Fredholm integro-differential equations with 

fractional derivative 

The class of Fredholm integro-differential equations with 

fractional derivatives of the type 
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subjected to the initial conditions 

y(k)(0) = ck, k = 0, 1, . . . , n − 1, n − 1 < α ≤ n, n ∈ N,   (10) 

where ck and λ are constants, f (t), p(t), and K(t, x) are given 

functions satisfying certain conditions which implies that Eq. 

(9) has a unique solution, and y(t) is an unknown function to be 

determined. 

To obtain the solution to Eq. (9), we integrate both sides of Eq. 

(9) to t for n times. With the properties enlisted above, the 

equation is in the form  
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Next, we assume that the arrived solution y(x) is m+1 times 

continually differentiable on the interval I, i.e., y ∈ Cm+1. 

Consequently, for y ∈ Cm+1, y (x) can be represented in terms 

of the mth-order Chebyshev series as 
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where ξ is between x and t, which readily shown that the 

Lagrange remainder  

y(m+1)(ξ )(x − t)m+1/(m + 1)! is sufficiently small for a large 

enough m provided that y(m+1)(x) is a uniformly bounded 

function for any m on the interval I. Due to this fact, we will 

neglect the remainder and the truncated Chebyshev series y(x) 

as 
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The remainder vanishes for a polynomial of degree less than or 

equal to m, means that mth-order Chebyshev series is exact. 

Substituting the approximate expression (14) for y(x) into Eq. 

(12), to have 
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or further 
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Thus Eq. (12) becomes an mth-order, linear, ordinary 

differential equation with variable coefficients for y(t) and its 

derivations up to m. We will determine y(t), . . . , y(m)(t) by 

solving linear equations. To this end, other m-independent 

linear equations for y(t), . . . , y(m)(t) are needed. This can be 

achieved by integrating both sides of Eq. (12) to t from 0 to s 

and changing the order of the integrations to have 
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where we have replaced variable s with t, for convenience. 

Applying the Chebyshev series again and substituting (14) for 

y(x) into Eq. (19) gives

k10(t)y(t) + k11(t)y′(t) + ・ ・ ・ + k1m(t)y(m)(t) = f(n+1)(t), (20) 
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Now arrived at another linear equation for y(j)(t), (j = 0, . . ., m) 

with y(0)(t) = y(t). By repeating the above integration process 

for i ( i ∈ N+, 1 < i ≤ m) times, one can arrive at 
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Therefore, Eqs. (16), (20), and (23) form a system of m+1 linear 

equations for m+1 unknown functions y(t), . . ., y(m)(t). 

For simplicity, this system can be rewritten in a Matrix form as 

Kmm(t)Ym(t) = Fm(t),               (26) 

where Kmm(t) is an (m + 1) × (m + 1) square matrix function in 

t, Ym(t) and Fm(t) are two vectors of length m + 1, and these are 

defined as 
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If only y(t) is of concern, it can be solved easily with the aid of 

the well-known Cramer’s rule. Hence, we can easily obtain the 

mth-order approximate solution as 
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Remark 1. The above method is readily extended to solve the 

following integro-differential equation 
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4. Volterra integro-differential equations with 

fractional derivative 

A class of Volterra integro-differential equations with fractional 

derivatives of the form 
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subjected to the initial conditions 

y(k)(0) = ck, k = 0, 1, . . . , n − 1,   n − 1 < α ≤ n,  n ∈ N.                                             

(33) 

First, we integrate both sides of Eq. (32) to t for n times. With 

the aid of the property, we can get the equation in the following 

form 
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Substituting (14) for y(x) into Eq. (34), one can get 

 a00(t)y(t) + a01(t)y′(t) + ・ ・ ・ + a0m(t)y(m)(t) = f(n)(t), (35) 

where 
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Using a procedure analogous to the previous section, we can 

obtain other m linear equations for y(t), y′(t), y′′(t), . . . , y(m)(t) 

as follows: 

ai0(t)y(t) + ai1(t)y′(t) + ・ ・ + aim(t)y(m)(t) = f(n+i)(t),     i ≤ m, 

(37) 

where 
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Eqs. (35) and (37) constitute a system of m + 1 linear equations 

for m + 1 unknown functions of y(t), y′(t), y′′(t), . . . , y(m)(t), 

which can be rewritten in an alternative compact form as 

Amm(t)Ym(t)= Fm(t),            (39) 

where Amm(t) is an (m + 1) × (m + 1) square matrix function in 

t, Ym(t) and Fm(t) are two vectors of length m + 1, and these are 

defined as 

 





















=

)()()(

)()()(

)()()(

)(

10

11110

00100

tatata

tatata

tatata

tA

mmmm

m

m

mm









 (40) 

 






















=

)(

)(

)(

)(

)( ty

ty

ty

tY

m

m


 





















=

+

+

)(

)(

)(

)(

)(

)1(

)(

tf

tf

tf

tF

mn

n

n

m 
  (41) 

Using Cramer’s formula, we can easily obtain y(t). Hence we 

can easily obtain the mth-order approximate solution as 
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Remark 2. The following integro-differential equation can be 

easily solved using the previously mentioned method. 
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5. Numerical examples 

Several numerical examples are used in this part to demonstrate 

the value of the approach suggested in this study. The absolute 

errors as |ym(t)−y(t)| between the corresponding precise value 

y(t) and the m th order approximation values ym(t) are 

calculated in the computations that follows for convenience, it 

is also simple to obtain approximation of higher order. 

Additionally, the relevant outcomes are more precise. 

Example 1. Consider a fractional differential equation [22]. 

,612)( 5.05.1 tttyD −=  (45) 

The exact answer and new result at evenly spaced mesh 

locations in [0, 1] are computed using the Chebyshev series of 

second kind, which also used third-order and sixth-order 

approximations. Table 1 displays the corresponding numerical 

results. The accuracy is admirably good. Moreover, using 

higher-order approximations will result in greater accuracy. 

subjected to 

y(0) = 0, y′(0) = 0,     (46) 

and the exact solution is y(t) = 12Γ (2)t2.5/Γ (3.5) − 6Γ (1.5)t2/Γ 

(3). 

 

 

 

 

 

 

 

 

 

The exact answer and new result at evenly spaced mesh 

locations in [0, 1] are computed using the Chebyshev series of 

second kind, which also used third-order and sixth-order 

approximations. Table 1 displays the corresponding numerical 

results. The accuracy is admirably good. Moreover, using 

higher-order approximations will result in greater accuracy. 

 

TABLE 1 
ABSOLUTE ERRORS OF EXAMPLE 1 

T Existing 

m = 3[22] 

Proposed  

m = 3 

Existing 

m = 6[22] 

Proposed  

m = 6 

0.2 0.0002 0.0001 0.0001 0.0001 
0.4 0.0012 0.0010 0.0000 0.0000 

0.6 0.0033 0.0028 0.0000 0.0000 
0.8 0.0067 0.0054 0.0001 0.0000 

1.0 0.0117 0.0104 0.0002 0.0001 
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Example 2. Consider the Bagley–Torvik equation [23] 

[D2 + D3/2 + D0]y(t) = t2 + 2 + 4t0.5/1.7725,    (47) 

with the conditions 

y(0) = 0, y′(0) = 0.          (48) 

The exact solution is y(t) = t2.  

 

 

 

 

 

 

 

 

 

 

 

In Table 2, there is a comparison of the approximate using 

Chebyshev series of second kind and exact solutions which is 

the existing method of Taylor series. The precision is excellent, 

and the third-order approximation simplifies the precise 

answer. As the mth-order approximation reduces to the exact 

solution if the precise answer is a polynomial of degree less than 

or equal to m, which is what we anticipated. 

Example 3. Consider the Fredholm integro-differential 

equation with a parameter [22]. 

 =+
t

tfdxxytxy
0

)()()(cos    (49) 

y(0) = 1.       (50) 

In the above equation, λ is taken as 1 or 0.01, and f (t) is chosen 

such that the exact solution is y(t) = 1 + t2. The method to find 

the first- and second-order approximations is discussed in this 

study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 showed the absolute differences between the Taylor 

series solution and its approximate (Chebyshev series of second 

kind). The first approximates accuracy is not very excellent, 

especially at t = 1 but second-order approximation, on the other 

hand, reduces to the precise solution. This is simple to 

understand because the precise solution is a polynomial of 

degree 2. In the context of the current study, the exact solution 

is essentially provided by the second-order approximation. This 

is unaffected by the size of λ.  

Example 4. Consider an integro-differential equation with 

fractional derivative [22] 

 
=−+

t
tt t

dsssgetgettgD
0

25.2
275.0 ,

)25.3(

6
)()(

5

1
)( (51) 

subjected to g(0) = 0,           (52) 

and the exact solution is g(t) = t3.  

We assess the numerical outcomes using the approximate 

method for m = 1, 2, or 3. 

 

 

 

 

 

 

 

Table 4 depicted the related absolute errors in comparison to the 

Chebyshev series of second kind results. The accuracy is 

admirably good. Moreover, using higher-order approximations 

will result in greater accuracy. 

 

CONCLUSION 

Fredholm and Volterra integro-differential equations are 

addressed in this study along with a straightforward and 

efficient method for solving a large class of linear integro-

differential equations with fractional derivatives. Under the 

right circumstances, the integro-differential equations can be 

transformed into a system of linear equations for the functions 

and their derivatives by using the Chebyshev series expansion 

of the functions at every point. Solving the resulting system of 

linear equations, which may be efficiently computed using 

software (MATLAB 2009), will yield the necessary 

approximate answer. The examples demonstrate the excellent 

accuracy and simplicity of this procedure while comparing the 

approximate with the existing (Taylor) method and Eulerian 

Polynomial basis functions. The derived mth-order 

approximation is additionally accurate for polynomials with 

degrees equal to or below m.  
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