
COVENANT JOURNAL OF PHYSICAL AND LIFE SCIENCES VOL.12, NO.2, DECEMBER 2024; DOI: XXX XXXX XXX 

1 

 

Received: 22.10.2024         Accepted: 22.11.2024         Published: 22.11.2024 
 

Abstract:  
This study explores the impact of pipeline conflicts on processor reliability and performance, focusing specifically on data hazards, one of three 

primary types of pipeline conflicts (the others being control hazards and structural conflicts). Data hazards arise from dependencies between 

instructions, causing stalls that reduce pipeline efficiency. The research applies machine learning to detect and mitigate these conflicts, using a 

dataset of artificial instruction sequences, each labeled as either conflict-free or containing one of three data hazard types: Read After Write 

(RAW), Write After Read (WAR), or Write After Write (WAW). Two machine learning models—logistic regression and Support Vector 

Machine (SVM)-were evaluated for their effectiveness in identifying pipeline conflicts. The logistic regression model achieved 96% accuracy 

and high precision, recall, and F1-scores across all categories, indicating its strong ability to accurately classify pipeline conflicts. In contrast, 

the SVM model achieved lower accuracy (83%) and performed inconsistently across classes, excelling in some but struggling with others, 

suggesting difficulties in recognizing certain conflict patterns. 

 

Keywords: Pipeline conflicts, processors, Machine Learning, Logistic Regression, control hazards, data hazards, Support Vector Machine and 

structural conflicts 

 
 

1. Introduction 

INCE the 1960s, pipelined computer architecture has 

garnered considerable attention in the pursuit of faster and 

more cost-effective systems. Pipelining involves breaking 

down the execution of instructions into smaller stages and 

processing them concurrently, allowing for improved 

performance without a significant increase in overall system 

cost. As technology has advanced, the availability of faster 

and more affordable Large-Scale Integration (LSI) circuits has 

further propelled the potential of pipelining, making it a 

promising approach for future computer architecture [1]. 
The problem of pipeline conflicts has become a significant 

difficulty in processor design and performance optimization. 

Utilizing the structural and behavioural traits that distinguish 

pipelined circuits from other circuits can greatly increase the 

productivity and scalability of pipelined circuit verification, as 

demonstrated by the work of MD Aagaard [2] in their paper 

titled A Hazard-Based Correctness Statement for Pipelined 

Circuits. Our analysis is based on their formal model of 

pipelines, which extends a state machine with particular 

information on state variable read/write interactions and parcel 

transfer across stages. Furthermore, their rigorous definition of 

correctness, which is based on data, structural, and control 

dangers, provides a thorough method for assessing pipeline 

reliability. This work proposes a fresh paradigm that utilizes 

the ideas and techniques provided by MD Aagaard [2]to 

effectively investigate and solve pipeline problems. With 

machine learning models trained on massive datasets, we can 

now detect, identify, and manage such conflicts in real time, 

ensuring increased processor efficiency as well as longevity in 

complex and rapidly evolving computing environments. 

A wide range of fields have recently shown a great deal of 

interest in machine learning techniques. Machine learning 

offers a very potential substitute for conventional dispute 

resolution procedures by using data-driven methodologies to 

automatically find, analyze, and resolve pipeline problems. By 

training models on historical data and including features that 

can detect patterns, machine learning algorithms can predict 

the likelihood of disagreements in the future.This enables the 

processor's throughput and performance to be optimized 

through the use of proactive and adaptive techniques. 

By training models on historical data and adding variables that 

may represent the features of conflicts, machine learning 

algorithms can recognize patterns and predict the likelihood of 

disagreements in the future. This allows for the utilization of 

preemptive and flexible approaches to optimize the processor's 

throughput and performance. 

Furthermore, machine learning models can adjust to shifting 

workloads, dynamic circumstances, and system architecture. 

They are well adapted for making decisions in real-time in 

intricate and quickly changing contexts since they 

cancontinuously learn and update their knowledge based on 

fresh facts [3]. 

1UGWUNNA, O. Charles, 2BELONWU, S. Tochukwu, 2UGOH, Daniel, 3JOSHUA, John & 
4ADEKOYA, A.Mathew. 

1Department of Computer Science, Wigwe University, Isiokpo, Rivers State, Nigeria. 
2Department of Computer Science, Nnamdi Azikiwe University, Awka, Anambra State, 

Nigeria. 
3Department of Computer Science, Ahmadu Bello University, Zaria, Kaduna State, Nigeria. 

4Department of Physics, Wigwe University, Isiokpo, Rivers State, Nigeria 

Pipeline Conflict in Processors: An Approach for Examining 
and Resolving Pipeline Conflict Using Machine Learning 

:charles.ugwunna@wigweuniversity.edu.ng; +(234) 8037921011 

S 

 

 



Ugwunna et al.: Pipeline Conflict in Processors: An Approach for Examining and Resolving Pipeline Conflict Using Machine Learning  

2 

 

Remember that precise reflection and adjustment are 

necessary for methods based on machine learning for pipeline 

conflict resolution to be implemented successfully. Important 

elements that can affect the model's efficacy include the 

selection of relevant and high-quality training data, the 

development of reliable machine-learning algorithms, and the 

choice of suitable features. When using machine learning 

models in real-world situations, potential biases and 

interpretability issues with data privacy models should also be 

taken into account. 

During the study process, we have chosen to concentrate on 

applying machine learning to anticipate, address, and lessen 

data dangers. Allowing several instructions to run 

concurrently runs the risk of them interfering with one another 

and creating conflicts. When instructions in a pipeline are 

executed concurrently, several different kinds of conflicts may 

occur. One of the main challenges of pipelined systems' high 

performance is data risks [4]. 

By enabling the use of complex scheduling and forwarding 

algorithms, pipelined designs can be greatly enhanced by 

machine learning's predictive power. These models highlight 

important paths and potential data dependencies within the 

pipeline, allowing for the intelligent sequencing of instructions 

or the inclusion of appropriate routing methods to mitigate 

dangers. The primary goal of this research project is to 

determine how machine learning may assist in developing 

more efficient pipeline designs in addition to predicting 

possible hazards. 

Technological developments present a significant 

opportunity to transform computer system design and 

optimization through the incorporation of machine learning 

into pipelined systems. To identify and address pipeline 

conflicts, particularly data hazards, in pipelined computer 

architecture, this research suggests applying machine learning 

models. 

 

2. REVIEW OF RELATED WORK 

Pipeline architecture came into existence because the need 

for faster and more cost-effective systems became critical. It 

was created because it can help match the speeds of various 

subsystems without duplicating the cost of the entire system 

involved. Pipelining was developed as a way to improve 

processors by allowing multiple instructions to be executed 

simultaneously, but of course, for every advantage, there will 

also be a disadvantage, which brought about pipeline conflicts 

in the architecture [5]. 
To improve the RISC cores' resilience and dependability, 

Tahar and Kumar [6]  introduced a methodical technique for 

explicitly validating pipeline conflicts in these processor 

architectures. Through the process of formalizing and 

classifying the various kinds of conflicts that may occur when 

instructions are executed simultaneously in the pipeline, the 

researchers prepared the way for a thorough examination. 

This methodology is significant because it streamlines the 

verification process by introducing automated proof 

techniques that are customized for each unique type of 

conflict. Interestingly, when conflicts are found, the research 

produces the associated circumstances that lead to their 

occurrence, offering insightful information to designers on 

how to resolve and eradicate them. The authors demonstrated 

the applicability and effectiveness of their proposed approach 

through illustrative examples of the DLX RISC processor. 

Through this significant contribution, the research community 

gained an invaluable resource to systematically investigate, 

detect, and ultimately mitigate pipeline conflicts in RISC 

cores, fostering the development of more dependable and 

efficient processor designs. 

Many strategies have been put out over time to resolve the 

pipeline conflicts in computer architecture, some of which are: 

- InstructionScheduling: As part of an effort to 

construct an optimizing compiler for a pipelined 

architecture, a code reorganization approach has been 

developed to minimize the amount of runtime 

pipeline interlocks. ILP processors present a higher 

challenge to compilers, and most of these processors 

fall short of performance targets in the absence of 

sophisticated compiling techniques. These methods 

are mostly used during the code generation and high-

level implementation stages of instruction scheduling 

[7]. 

- Register renaming: This technique removes erroneous data 

dependencies between register operands of succeeding 

instructions in sequential code, such as write after read (WAR) 

and writes after write (WAW). By removing associated 

precedence restrictions from the instructions' execution order, 

this technique raises the IPC (number of instructions 

performed per cycle) by enabling more instructions to be 

processed in parallel each cycle. A thorough grasp of this 

intricate process can be attained by investigating the register 

renaming design space[8]. 

Tongsima et al. (1998) suggested a new loop scheduling 

algorithm intended to lower the risk of data in applications 

involving digital signal processing. The SHARP tool, which 

schedules a pipelined data flow graph to multiple pipelined 

units, included this algorithm. The tool's architecture 

minimises execution hazards and hides data threats. 

Hwang and Hwang [9] present the idea of using code 

reorganization in pipelined architectures as an alternative for 

pipeline interlocks. To avoid the need for intricate hardware 

solutions, code reorganization involves rearranging machine-

level instructions during compilation. The study demonstrates 

the NP-completeness of the problem and suggests a heuristic 

algorithm for its solution. Verifying the approach, empirical 

data from the MIPS processor design are presented. 

Additionally, the effect of code reorganization on the compiler 

system was discussed, providing some useful context. In 

summary, the research delves into the possibilities of 

rearranging code to improve pipelined architectures and 

optimize processor designs. 

The work by Charvát et al. [10] shows an automated way to 

find flaws in single-pipelined microprocessors, such as data 

and control hazards. This is meant to make the verification 

process better. This method is implemented in the tool Hades.  

In contrast, the study by Parrot et al. [11] extends the model 

to investigate the design space of pipelined systems and 



Ugwunna et al.: Pipeline Conflict in Processors: An Approach for Examining and Resolving Pipeline Conflict Using Machine Learning  

3 

 

validate temporal features, with an emphasis on pipeline 

design optimization using Timed Petri Nets. Furthermore,  

Najjar et al. [12] study explores the use of pipeline techniques 

for hazard identification and mitigation in a hardwired 

programmable processor.  

By demonstrating several approaches and techniques to 

improve the dependability and effectiveness of pipelined 

circuit verification, these works jointly highlight the 

significance of addressing risks in pipelined circuits to 

guarantee accurate execution and performance optimisation.  

3. METHODOLOGY 

The procedure commences with data gathering when relevant 

information regarding processor instructions is obtained. This 

could contain historical information, system logs, or 

performance indicators that highlight the traits and chance of 

developing conflict. 

 

 
 

Figure 1: System architecture 

 

After data is gathered, the preparation stage makes sure it is 

consistent and suitable for the model. Cleaning up the data, 

dealing with missing values, and normalizing the input 

features are all part of preprocessing. Figure 1 shows how to 

do this. As soon as the data is ready in a standard format, it 

may be added to the machine learning model. 

 

After training, the machine learning model is integrated into 

the processing system. This integration could entail 

embedding the model into the existing pipeline or integrating 

it into the processor architecture. When the model is smoothly 

integrated, it becomes a crucial part of the decision-making 

process for evaluating instructions. 

 

Individual instructions or batches of instructions are run 

through the model for analysis during the evaluation phase. 

The model looks at the instructions' properties and makes a 

prediction about whether or not conflicts will arise from them. 

An indication of the possible risks connected to each 

instruction is given by this prediction. 

 

One component of the methodology is the flag-raising 

system, which is activated as soon as conflicts are detected. 

The model alerts the relevant systems or stakeholders when it 

finds a conflict by raising a flag or sending out a notification. 

Real-time conflict detection and alerting enable proactive 

measures and timely response. Following conflict 

identification, the method incorporates conflict resolution 

strategies. These strategies which are implemented in reaction 

to the conflicts discovered might involve rearranging 

instructions, making use of pipelining techniques, or changing 

the processor architecture. By lowering the number of 

conflicts, the system's overall performance can be improved. 

Throughout the process, the model's performance is 

regularly tracked and evaluated. The model is gradually 

enhanced and modified based on feedback regarding its 

efficacy and accuracy. Iteratively evaluating the model 

ensures that its ability to accurately assess pipeline conflicts 

will always be dependable and effective. 

Using this method makes the machine learning model that 

the processing system has developed an essential component 

for analyzing instructions and anticipating conflicts. Proactive 

decision-making and efficient dispute resolution are made 

possible by its integration, which enhances processor 

performance. 

3.1 Data Generation and Analysis 

The purpose of this dataset is to provide synthetic data for 

pipeline identification of conflict studies. By focusing on 

detecting pipeline conflicts in instruction sequences, it aims to 

facilitate the development and evaluation of machine learning 

models. Using this dataset, scholars and practitioners can 

analyze and explore various approaches to detecting and 

resolving pipeline disputes. 

 

With a specific focus on data risks, the dataset is made to 

represent several information operations that are implemented 

in assembly code. These instructions mimic real-world 

instruction sequences and real-world data hazard conditions. 

The labels in this dataset correspond to the following danger 

scenarios: 

(i) Read-After-Write (RAW) dependency occurs when a 

subsequent instruction reads a register or memory location that 

was previously written to by another instruction. 

(ii) Write-After-Read (WAR) dependency occurs when a 

subsequent instruction writes to a register or memory location 

that was previously read from another instruction. 

(iii) Write-After-Write (WAW) dependency: Two 

subsequent instructions write to the same register or memory 

location.  

3.1.1 Description of the Dataset 
The three columns that make up the dataset hold the 

essential information required for detecting data hazards. 

a) Instruction 1: The first instruction in a sequence of 

instructions is shown in this column. It includes the 

instruction's textual representation in assembly language 

format. Operations like arithmetic (ADD, SUB), memory 

(LOAD, STORE), logical (AND, OR), and shifts (SHIFT) are 

examples of operations that are represented as strings in 

instructions. The registers (R0, R1, etc.) and immediate values 

are the operands of the instructions. 

b) Instruction 2: This column represents the subsequent 

instruction in the instruction sequence. It follows the same 

format as Instruction 1 and represents the instruction that has a 

potential data hazard with Instruction 1. The data hazard can 

be of three types: Read-after-Write (RAW), Write-after-Read 

(WAR), or Write-after-Write (WAW). 



Ugwunna et al.: Pipeline Conflict in Processors: An Approach for Examining and Resolving Pipeline Conflict Using Machine Learning  

4 

 

c) Conflict Type: This column represents the type of data 

hazard present between Instruction 1 and Instruction 2. It 

specifies whether the pair of instructions exhibits a RAW, 

WAR, WAW hazard, or no conflict. 

 

The dataset includes synthetic samples for each type of data 

hazard as well as instances with no conflicts. Random values 

are generated for registers and immediate values to introduce 

variations and randomness in the data.  

 

3.1.2 Dataset Generation Process 
This dataset was synthetically generated using predefined 

rules to simulate different types of pipeline conflicts (data 

hazards) [13, 14].  The generation process adheres to the 

following rules: 

a) The first instruction, designated as instruction 1, is 

chosen and written to a register or memory address. This is 

known as the read-after-write dependency (RAW) mechanism. 

Next, a different instruction is chosen, indicated by instruction 

2, which reads from the register or memory address that 

instruction 1 had written to. After that, the instructions are 

given back and marked "RAW." Instruction 2 must depend on 

Instruction 1 in this connection. 

b) Write-After-Read Dependency (WAR): Instruction 2, 

which reads from a register or memory address, is the first 

instruction chosen. Next, a different instruction is chosen, 

indicated by instruction 2, which writes to the same register or 

memory address that instruction 1 was reading. After that, the 

instructions are given back and marked "WAR." 

c) Writing to a register or memory address is the first 

instruction chosen in a write-after- write (WAW) system. This 

is indicated by instruction 1. Next, a different instruction is 

 chosen, indicated by instruction 2, which writes to the same 

register or memory address  as instruction 1. After that, the 

instructions are given back and marked "WAW." 

 

Table 1: Sample of the Dataset 

 

S/N Instruction 1 Instruction 2 Conflict Type 

0 SUB R10, R0, 34 OR R5, R10, R2 RAW 

1 XOR R10, R0, 19 LOAD R10, R0, 36 WAW 

2 AND R4, R1, R2 SHIFT R2, R4, R3 WAR 

3 OR R10, R1, R2 LOAD R10, R10, R3 WAR 

4 SHIFT R5, R1, R2 AND R9, R5, R3 WAR 

5 AND R1, R0, 43 ADD R1, R1, R2 RAW 

6 MUL R2, R1, R2 MUL R8, R3, 10 No_CONFLICT 

7 MUL R13, R0, 31 OR R10, R13, R2 RAW 

8 OR R15, R0, 20 MUL R15, R0, 0 WAW 

9 OR R0, R0, 16 ADD R0, R0, 8 WAW 

 
 

Table 1 above displays a sample of the data set created with 

pre-established rules to model various pipeline conflict 

scenarios. The sample dataset can be gotten from the link. 

https://github.com/Dev-180Memes/pipeline-conflict-detection.  

For a machine learning model to effectively learn the 

differences between instructions that would generate data 

hazards and instructions that wouldn’t, the need to generate 

data on instructions that wouldn’t generate any hazards arose. 

The data on non-conflict-generating data was simulated using 

the following rules: 

(i) An instruction 1 which writes to a register Rx and reads 

from registers, R1 and R2 is first selected. 

(ii) An instruction 2 which writes to a register Ry and 

reads from registers, R3 and performs operation on the 

immediate value of 10 is also selected 

(iii) The instructions along with the label “No CONFLICT” 

are then returned. 

 

The dataset described in Table 1 is synthetic and based on 

predefined rules. It does not in any way represent real-world 

data and should be used only for educational or research 

purposes.  

 

3.2 Machine Learning Model Development 

From the data generated in Table 1 above we have a 

resulting dataset with three columns named:   

(i) Instruction 1 

(ii) Instruction 2 

(iii) Conflict type 

Each column contains data that would be used in training a 

machine learning model that can adequately predict data 

hazards in instruction sequences. Each of these instructions 

and the conflict type they present are all represented as strings. 

Machine learning models are only capable of training numbers 

(integers or floats) which means we would need to represent 

each of these strings as numbers. 

 

 
Figure 2: Machine Learning Process 

 

Figure 2 shows the machine learning processes involved 

enabling the instructions to be used in the models .The 

following preprocessing steps were taken on each of the 

columns as follows: 

 

Conflict Type: The conflict type column consists of data on 

the type data hazard that would be produced as a result of 

these instructions. In the dataset there are four (4) different 

types of hazards which are Read-After-Write (RAW), Write-

After-Read (WAR), Write-After-Write (WAW) and No 

Conflict. To use this data in our ML model we need to convert 

it into a numerical representation, which we accomplish by 

label encoding[15]. 

 

After label encoding is done, the target values are now 

represented in numeric form. This numeric form would act as 

the target values for our trained ML model. 

 

Instruction 1 and Instruction 2: Since instruction 1 and 

instruction 2 are both similar, the same kind of preprocessing 

is done to both columns. To change values of the instruction 

strings to a numeric representation a rule is then provided. 



Ugwunna et al.: Pipeline Conflict in Processors: An Approach for Examining and Resolving Pipeline Conflict Using Machine Learning  

5 

 

The instructions in the dataset are examples of instructions 

in a three (3) operand machine (Patterson, 1985). In a three-

operand machine, each instruction consists of four (4) parts, 

which are the operator and three operands. The dataset 

consists of 10 unique operators. These operators are each 

changed into a numerical representation (0 - 9) and stored in 

an array. 

After the operator has been changed, we are now movingon 

to the operands. The operands are each represented in two 

distinct ways, it’s either the operand is a register or an 

immediate value. If the operand is a register, we remove the R 

in front and add the leftover number (the register number) into 

the array. Finally, if the operand is an immediate value, the 

binary representation of the number is used. These rules are 

implemented and the resulting data set are displayed in the 

Table 2 below which are accomplished by data set encoding. 

 

Table 2: Encoded Dataset 

 

 Instruction 1 Instruction 2 Conflict Type 

 [1, 10, 0, 100010] [7, 5, 10, 2] 1 

 [8, 10, 0, 100011] [4, 10, 0, 100100] 3 

 [6, 4, 1, 2] [9, 2, 4, 3] 2 

 [7, 10, 1, 2] [4, 10, 10, 3] 2 

 [9, 5, 1, 2] [6, 9, 5, 3] 2 

 
 

3.3 Feature Engineering 

The instruction was successfully changed into an array of 

numbers; the problem of having the instructions as arrays and 

our target (Conflict Type) is an integer still exists. To properly 

train our model we need to extract both our operators and 

operands from the array, this is done using pandas series 

object as displayed in Table 3 below where the operator and 

operands are taken out of the array 

Table 3: Operator and operands 

 

 Conflict 

Type 

Operat

or 1 

Operand 

1.1 

Operand  

1.2 

Operand 

1.3 

Operato

r 2 

Operator 

2.1 

Operator 

2.2 

Operator 

2.3 

 1 1 10 0 100010 7 5 10 2 

 3 8 10 0 10011 4 10 0 100100 

 2 6 4 1 2 9 2 4 3 

 2 7 10 1 2 4 10 10 3 

 2 9 5 1 2 6 9 5 3 

 
 

The instruction 1 has an operand and three operators that 

can be represented as operand 1, operator 1.1, operator 1.2 and 

operator 1.3. The same applies for operator 2. This logic is 

then applied to instruction 2 also, so that from the instructions 

using pandas series object we can extract and properly 

represent each item in the array. 

 

4. RESULTS AND DISCUSSIONS 

The results discussed in this paper were generated using 

each of this ML algorithms as depicted in table 4. 

Table 4:  Machine earning Algorithm results 
Model Accuracy Precision Recall F1-Score 

Logistic Regression 96% 0.967 0.963 0.965 

Support Vector 

Machine 

83% 0.909 0.884 0.895 

  

Logistic Regression: This is a popular machine learning 

algorithm commonly used for binary classification tasks. It is 

particularly useful when the outcome variable is binary or 

categorical. Despite its name, logistic regression is a 

classification algorithm rather than a regression algorithm. 

Among its many benefits are its efficiency, interpretability, 

and simplicity with other regression models. This algorithm is 

a robust and trendy tool for solving classification problems; 

because of its interpretability, it is especially helpful in 

situations where it is important to comprehend the factors that 

go into the classification decisions [16, 17]. 

Support Vector Machine: For tasks including regression and 

classification, Support Vector Machines (SVM) constitutes an 

effective machine learning algorithm. By maximizing the 

margin, it determines the most suitable hyperplane to divide 

data points into different classes. By using kernel functions to 

translate the data into a higher-dimensional space, SVM can 

handle both linear and nonlinear relationships between 

features. Because of this, SVM is useful for capturing intricate 

patterns. Because of the margin concept, SVM is less liable to 

overfitting. 

The logistic regression model's 96% accuracy rate in 

classifying pipeline conflicts in the processor is demonstrated 

in Figure 3. All classes have consistently high precision, 

recall, and F1 scores, ranging from 0.94 to 0.99. This implies 

that the logistic regression model is highly capable of 

accurately detecting pipeline conflict occurrences in various 

categories. 

 

 
Figure 3: Confusion Matrix for Logistic Regression 

On the other hand, Figure 4 shows that the SVM model 

performs unevenly across classes and has a lower overall 

accuracy of 83% s shown in table 4. It can correctly classify 

instances of class 0 and class 3, as evidenced by its high recall, 

precision, and F1-scores; however, it has difficulty classifying 

instances of class 1 and class 2. The inferior performance in 

these classes can be a sign that it's difficult to identify the 

precise traits and patterns associated with pipeline conflicts 

within those classifications. 

Moreover, the logistic regression model's interpretability 

holds significance within the research context. It enables 

researchers to comprehend the fundamental elements and 

characteristics causing pipeline conflicts, offering insights into 



Ugwunna et al.: Pipeline Conflict in Processors: An Approach for Examining and Resolving Pipeline Conflict Using Machine Learning  

6 

 

the underlying causes and possible remedies. 

 
 

Figure 4: Confusion Matrix for Support Vector Machine 

 

This interpretability helps identify important factors 

influencing conflicts and supports the development of 

resolution strategies, which is in line with the research goal of 

creating a framework for examining and resolving pipeline 

conflicts. 

It is essential to take into account the implications of the 

classification results in the context of pipeline conflict 

investigation in addition to the performance metrics that have 

been discussed. The logistic regression model appears to be 

highly accurate at detecting and classifying pipeline conflicts 

based on its high precision, recall, and F1 scores across all 

classes. This suggests that the model can offer insightful 

information about the types and frequency of pipeline 

conflicts in the processor. 

The goal of the project is to create a framework for 

investigating and resolving pipeline conflicts with machine 

learning. The robust performance of the logistic regression 

model in this context is in line with the goals of the study. The 

model's ability to precisely identify and classify pipeline 

conflicts can aid in the development of successful resolution 

strategies as well as a thorough understanding of the factors 

that contribute to these conflicts. 

The logistic regression model's interpretability makes it 

even more appropriate for pipeline conflict research. The 

model's coefficients can be used by researchers to determine 

specific features and variables that have the biggest influence 

on pipeline conflict prediction. The interpretability of the data 

enables a more profound comprehension of the fundamental 

reasons and changes linked to pipeline conflicts, thereby 

enabling focused interventions and enhancements in the 

architecture and functionality of the processor. 

 

5. CONCLUSION 

In conclusion, with superior recall, accuracy, and precision 

scores than the other models in every class, the logistic 

regression model performs exceptionally well. Because of its 

accuracy in pipeline conflict classification, it is a reliable 

instrument for recognizing and categorizing different types of 

conflicts. Researchers may also find out more about the 

factors causing pipeline disputes thanks to the interpretability 

of the logistic regression model, which aids in the 

development of targeted remedies. In contrast, the SVM 

model's lower overall accuracy and uneven performance 

across classes demonstrate its limitations in accurately 

categorizing some types of pipeline conflicts. However, the 

benefits of the SVM model, such as its ability to handle 

nonlinear relationships through kernel functions, may be 

useful in recognizing intricate patterns linked to pipeline 

disputes. Because of its great efficiency and interpretability, 

the logistic regression model is the most suitable choice for 

investigating pipeline conflicts in the processor, given the 

goals of the research. The reliability and trustworthiness of the 

outcomes are increased by accuracy and uniform performance 

across classes. Additionally, by simplifying the model's 

interpretation, pipeline conflicts can be better understood, 

leading to more focused interventions and improved processor 

architecture and operation. 

 

DECLARATIONS 

Ethics approval and consent to participate: Not Applicable  

Consent for publication: Not Applicable 

Conflict of interests  

The author declare no conflict of interests. 

Authors’ contributions: Authors wrote and edited the 

manuscript. 

 

References 
[1] D. A. Patterson, "Reduced instruction set computers," 

Communications of the ACM, vol. 28, no. 1, pp. 8-21, 1985. 
[2] M. D. Aagaard, "A hazards-based correctness statement for 

pipelined circuits," in Advanced Research Working Conference on 

Correct Hardware Design and Verification Methods, 2003: 

Springer, pp. 66-80.  

[3] M. E. Morocho-Cayamcela, H. Lee, and W. Lim, "Machine 

learning for 5G/B5G mobile and wireless communications: 
Potential, limitations, and future directions," IEEE access, vol. 7, 

pp. 137184-137206, 2019. 

[4] S. Tongsima, C. Chantrapornchai, E. H.-M. Sha, and N. L. Passos, 
"Reducing Data Hazards on Multi-pipelined DSP Architecture 

with Loop Scheduling," Journal of VLSI signal processing systems 

for signal, image and video technology, vol. 18, pp. 111-123, 1998. 
[5] C. V. Ramamoorthy and H. F. Li, "Pipeline architecture," ACM 

Computing Surveys (CSUR), vol. 9, no. 1, pp. 61-102, 1977. 

[6] S. Tahar and R. Kumar, "Formal verification of pipeline conflicts 
in RISC processors," in Proc. European Design Automation 

Conference (EURO-DAC94), Grenoble, France, 1994: Citeseer, 
pp. 285-289.  

[7] P. B. Gibbons and S. S. Muchnick, "Efficient instruction 

scheduling for a pipelined architecture," in Proceedings of the 
1986 SIGPLAN symposium on Compiler construction, 1986, pp. 

11-16.  

[8] D. Sima, "The design space of register renaming techniques," 
IEEE micro, vol. 20, no. 5, pp. 70-83, 2000. 

[9] Y.-T. Hwang and J.-S. Hwang, "Efficient code generation for 

digital signal processors with parallel and pipelined instructions," 
in 1997 IEEE Workshop on Signal Processing Systems. SiPS 97 

Design and Implementation formerly VLSI Signal Processing, 

1997: IEEE, pp. 243-252.  
[10] L. Charvát, A. Smrčka, and T. Vojnar, "Utilizing parametric 

systems for detection of pipeline hazards," International Journal 

on Software Tools for Technology Transfer, pp. 1-28, 2022. 
[11] R. Parrot, M. Briday, and O. H. Roux, "Timed Petri nets with reset 

for pipelined synchronous circuit design," in International 

Conference on Applications and Theory of Petri Nets and 
Concurrency, 2021: Springer, pp. 55-75.  

[12] H. Najjar, R. Bourguiba, and J. Mouine, "Pipeline Hazards 

Resolution for a New Programmable Instruction Set RISC 



Ugwunna et al.: Pipeline Conflict in Processors: An Approach for Examining and Resolving Pipeline Conflict Using Machine Learning  

7 

 

Processor," International Journal of Advanced Computer Science 
and Applications, vol. 9, no. 10, 2018. 

[13] D. R. Jeske, P. J. Lin, C. Rendon, R. Xiao, and B. Samadi, 

"Synthetic data generation capabilties for testing data mining 
tools," in MILCOM 2006-2006 IEEE Military Communications 

conference, 2006: IEEE, pp. 1-6.  

[14] H. Murtaza, M. Ahmed, N. F. Khan, G. Murtaza, S. Zafar, and A. 
Bano, "Synthetic data generation: State of the art in health care 

domain," Computer Science Review, vol. 48, p. 100546, 2023. 

[15] B.-B. Jia and M.-L. Zhang, "Multi-dimensional classification via 
sparse label encoding," in International Conference on Machine 

Learning, 2021: PMLR, pp. 4917-4926.  

[16] M. P. LaValley, "Logistic regression," Circulation, vol. 117, no. 
18, pp. 2395-2399, 2008. 

[17] T. G. Nick and K. M. Campbell, "Logistic regression," Topics in 

biostatistics, pp. 273-301, 2007. 
 


