

Covenant Journal of Physicl & Life Sciences (CJPL) Vol. 4 No. 2, Dec, 2016

An Open Access Journal available online

Preparation, Release Pattern and Antibacterial Activities of Chitosan-Silver Nanocomposite Films

¹*Sonde O. I., ¹Ogungbesan S.O., ¹Olaniyan J.O., ²Oloyede A.R., ¹Idowu M. A., ¹Afolabi T.A., ³Adetunji O., & ¹*Dare E. O.

¹Department of Chemistry, Federal University of Agriculture Abeokuta, Ogun State, Nigeria.
 ²Biotechnology Centre, Federal University of Agriculture Abeokuta. Ogun State, Nigeria.
 ³Department of Mechanical Engineering, Federal University of Agriculture Abeokuta, Ogun State.

*Corresponding authors: sonde.idowu@gmail.com, dare3160@hotmail.com

Abstract: The present study examined the preparation of chitosan-silver nanocomposite films as carriers for silver release pattern. Chitosan a biopolymer having immense structural possibilities for chemical and mechanical modifications to generate novel properties, functions and applications. Chitosan-silver nanocomposite films has been synthesised by reduction method, which is a simple and inexpensive method. The chitosan-silver nanocomposite films characterized in terms of its surface plasmon resonance and crystalline structure by using UV-Visible spectroscopy, X-ray diffraction, Fourier transform infrared and Scanning electron microscope. Swelling and release studies were carried out on crosslinked and un-crosslinked nanocomposite films. Antibacterial activities of chitosan-silver nanocomposite films were investigated on some pathogens: Staphylococcus aureus, Shigella dysenteriae, Escherichia coli, Salmonella typhii and Klebsiella pneumonia using agar well diffusion method. crosslinked chitosansilver nanocomposite demonstrated a slower release pattern relative to uncrosslinked chitosan-silver nanocomposite. The crosslinked and un-crosslinked nanocomposite became dislodged and completely released at 120 minutes and 90 minutes respectively. The results of the antibacterial activities revealed that the cross-linked chitosan-silver nanocomposite films has higher antibacterial properties than un-crosslinked chitosan-silver nanocomposite films. This study provides nanocomposite films potentially useful for delivery system.

Keywords: Biopolymer, Carrier, Nanocomposite, Antibacterial.

1. Introduction

In the past years, several synthetic as well as natural polymers have been

examined for pharmaceutical applications. A basic requirement for these polymers to be used in humans or animals is that they have to degrade into molecules with no toxicity to biological environments. In recent years, biodegradable polymers have attracted attention of researchers as carriers for drug delivery system [8].

Chitosan is a polysaccharide that occurs naturally. Its units are composed of randomly distributed β -(1-4)-linked Dglucosamine (deacetylated unit) and Nacetyl-D-glucosamine (acetylated unit). Chitosan interact very easily with binds bacterium and to DNA. glycosaminoglycans and most of the thereby proteins, enhancing the antimicrobial effect of metal nanoparticles [7]. Chitosan properties allow it to rapidly clot blood and have recently gained approval in the United State of America for use in bandages and other hemostatic products. Chitosan is used in pharmaceutical manufacturing as fillers in tablets and to mask bitter tastes in solutions taken by mouth. Films and coatings based on biopolymers functions as barriers against moisture, oxygen, aroma flavor as well as oil are the materials for future applications [3].

Metal nanoparticles embedded into polymer matrix can be used as sensor. materials with solvent switchable electronics properties, optical limiters and filters, and for optical data storage. They can be applied for catalytic applications and antimicrobial coatings. Nanocomposite polymer/metal of nanoparticles attracted has great attention because of its potential applications in the field of catalysis, bioengineering, photonics, and electronics [9]. Polymers are considered good host materials for metallic nanoparticles as well as other stabilizing

including agents. citrates, organic solvents, and organometallics [4]. Some of metal/polvmer examples nanocomposites synthesized being include (vinylalcohol), poly poly (vinylpyrolidone) [6], chitosan [1]. gelatin [6]. This accounts for the different properties of nanocomposites that are synthesized.

2. Experimental

2.1. Materials

All reagents in this work were of analytical grade and were used as received without further purification. AgNO3 (99.98% Sigma -Aldrich) was used as the silver precursor, Sodium citrate, (crosslinking agent), Ammonia solution, Sodium hydroxide and glacial acetic acid (99%) were also obtained from Sigma–Aldrich. All the aqueous solutions were prepared with doubledistilled water.

2.2. Methods

2.2.1. Preparation of Crosslinked

Chitosan-Silver Nanocomposite Films 5 g of silver nitrate was dissolved by stirring in 100 mL of distilled water. 20 mL of the solution was taken and aqueous NaOH was added dropwise to vigorously stirred solution till the precipitation occurred. The dirty green precipitate formed was dissolved in few drops of dilute ammonia. Two layers were formed after centrifugation and addition of acetic acid. It was decanted and added in chitosan matrix (6 mL, 1% (w/v) in acetic acid). Film was made by casting the solution on the petri dish and dried at room temperature for 24 hours. When the film has been harvested crosslinking was done by dipping the film in a 10 mL solution of sodium citrate (5 % w/v) after adjustment to pH 5. The film was washed with water to remove excess sodium citrate.

2.2.2. Swelling Studies

The completely dried, pre-weighed chitosan, crosslinked chitosan-silver and un-crosslinked chitosan-silver nanocomposite films were immersed in 250 mL phosphate buffer (pH 7.4) at 25 oC. The water uptake of the films was measured at 20 minutes interval using analytical balance to determine the mass. The swelling ratio (Q) of the films was calculated using the following equation: Q = Ws/Wd,

Where Ws is the weight of the swollen film at different time intervals (20, 40, 60, 80, 100, 120 and 140 minutes) and Wd is the weight of dry film.

2.2.3. Release Study

In Vitro release study of silver from chitosan-silver nanocomposite films was determined. A known weight of the dried nanocomposite films was put in the 20 mL phosphate buffer solution in a 50 mL tube. The temperature and rotation were adjusted to 37 oC and 90 rpm respectively. At predetermined time of 30, 60, 90, 120, 150, 180 and 210 minutes, 10 mL of sample was withdrawn and ultra-centrifuged for 30 minutes. The samples were further analyzed using **UV-Visible** spectrophotometer. The absorbance of each solution of the nanocomposite films was measured at λ max 425 nm.

2.2.4. Antibacterial activity of Chitosan-silver nanocomposite films

The antimicrobial activities of the synthesized films were tested against human pathogens like Staphylococcus aureus, Shigella dysenteriae, Escherichia coli, Salmonella typhii and

Klebsiella pnueumoniae by agar well diffusion method. An overnight culture of each pathogen grown in nutrient broth at 37 oC was diluted to a turbidity equivalent of 3.0×108 cfu/mL (1.0 Mcfarland standard) with a sterile normal saline. The cell suspension was then swabbed on the surface of Mueller-Hinton agar plates. A sterile cork borer of diameter 7 mm was used to make wells on the agar plates. Each well was filled with 50.0 μ L of each solution of chitosan-silver nanocomposite. The plates were left for one hour to allow the test materials to diffuse in the agar and then incubated at 37 oC for 24 hours without inversion. The antimicrobial activity was determined by measuring the clear zone (zone of inhibition) around the wells. The diameter (mm) of the zone of inhibition of 1.00 mm or greater was considered as a significant inhibition [11].

2.3. Characterization Methods and Instruments

chitosan-silver The synthesized nanocomposite films were confirmed using UV-visible spectroscopy (UVvisible), X-ray diffraction (XRD), Scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The UVvisiblespectra of the nanocomposite were detected over the range of 300–700 nm using a Shimadzu (UV.1650) UVvisible spectrophotometer. Crystalline structures of the synthesized chitosansilver were examined using Rigaku D/Max-2550Pc (Tokyo. Japan). Morphology of the films was studied by SEM through a JEOL JSM 840A.

3. Result and Discussion

Figure 1: UV-visible spectrum of chitosan-silver nanocomposite films.

3.1 Characterization

The UV-Visible spectrum of chitosansilver nanocomposite films is shown in Figure 1. The spectrum of chitosansilver nanocomposite films shows a single peak at maximum wavelength 420 nm which confirmed the presence of silver; this peak arises due to surface plasmon resonance vibrations of silver atoms. The peak at maximum wavelength 230 nm shows the presence of chitosan.

Figure 2 shows the X-ray diffraction pattern chitosan-silver nanocomposite films. Several distinct diffraction peaks at 20 values of 20.5, 21.0, 27.2, 36.8, 42.8, 50.5, 60.2 and 67.7 (crystalline peaks) is attributed to the presence of silver while the non-crystalline part indicate the presence of Chitosan as shown on the chitosan-silver nanocomposite XRD pattern which confirmed formation of the the nanocomposite.

Figure 3 shows the FTIR spectra of chitosan-silver nanocomposite films. The absorption peaks in the chitosansilver nanocomposite spectra at 2930.93cm⁻¹and 1342.50 cm⁻¹are characteristic of O-H stretching and O-H bending of chitosan respectively. The stronger the hydrogen bond the longer the O-H bond, the lower the vibration frequency, and the broader and the more intense the absorption band. The peak cm⁻¹indicates 1619.29 observed at hydrogen bonding nature of N-H bending and the peak at 3369.75 cm⁻¹ represents H bonded-OH of chitosan, the lower the frequency the stronger the H bond. The SEM image in Figure 4 reveals rough surfaces with whitish particles (silver nanoparticles) with particles surrounded black (chitosan), a clear evidence of swelling on the surface.

Figure 2: XRD pattern of Synthesized Chitosan – Silver nanocomposite film

Figure 3: FTIR Spectra of Synthesized Chitosan-silver Nanocomposite film

Figure 4: SEM image of chitosan-silver nanocomposite film

3.2 Swelling Test

Swelling test is useful for correlating drug release characteristics from polymeric films and barriers. It can be judiciously used in predicting and modifying drug release from dosage forms. The cross-linked chitosan-silver nanocomposite is known to be dependent on the availability of the cationic sites and the negatively charged species.

3.3 Release Study

Phosphate buffer (pH 7.4) has been considered as release medium which simulates body fluid according to literatures. However, crosslinked chitosan-silver demonstrated a slower silver release pattern relative to uncrosslinked chitosan-silver. Moreover, it

was apparently noted from the graphs that almost all the silver nanoparticles within cross linked and uncross-linked became dislodged and completely released at 120 minutes and 90 minutes respectively. This result perfectly agrees with our swelling studies, where swelling property of cross-linked chitosan-silver exhibited onset of dormancy at 120 minutes which made it coincided with un-crosslinked chitosansilver. From swelling and release studies, it is easy to explain that silver nanoparticles is gradually released into the system (according to figure 6 below). This is a clear evidence that polymer composite like chitosan can serve as carrier in delivery system.

Figure 5: Swelling ratio against time.

Figure 6: Shows the release of Silver from Chitosan

Figure 7: Shows silver released pattern of crosslinked chitosan-silver film compared with un crosslinked chitosan-silver.

100

12

11

8

8

7

50

7

5

4

4

Nil

25

Nil

Nil

Nil

Nil

Nil

100

11

8

7

6

Nil

50

6

Nil

Nil

Nil

Nil

25

Nil

Nil

Nil

Nil

Nil

Pathogens	Zones of inhibition (mm)											
	A (m	g/ mL	.)	B (mg/	(mL)		C (mg	/mL)	I	D (mg	/mL)	1

50

8

5

4

5

7

25

Nil

10

Nil

Nil

Nil

Table 1: Antibacterial Activity of Films against test pathogens

100 50

16

15

10 9

8

10

10 6

5

6

6

Staphylococcus

Escherichia coli

Salmonella sp.

Klebsiella sp.

aureus

Shigella sp.

25

5

Nil

Nil

Nil

100

12

11

9

8

9

*Control: Ciprofloxacin, Sample A: crosslinked chitosan- silver, Sample B: un-crosslinked chitosan-silver, Sample C: crosslinked chitosan, Sample D: chitosan

*Control

21

21

16

19

21

The antibacterial activity of the synthesized nanocomposite films was evaluated by agar well diffusion method. The inhibitory growth was measured based on the diameter of the clear inhibition zone. The results of the antibacterial activity of the synthesized nanocomposite films are shown in Table 1. With the exception of Chitosan, films at higher concentration (100mg/mL) showed higher antibacterial activity against Staphylococcus aureus, Shigella sp. Escherichia coli, Salmonella sp. and Klebsiella sp, but they were not as active as ciprofloxacin (control) which could be due to the concentrations used. The results further revealed that the higher the concentrations of the films, the higher their antibacterial activities against test pathogens.

References

- [1] Cao, X. L., Cheng, C., Ma, Y. L., & Zhao, C. S. (2010). Preparation of silver nanoparticles with antimicrobial activities and the researches of their biocompatibilities. J. Mater. Sci. Mater. Med., 21, 2861–2868.
- Jolanta, K., Malgorzata, C., Zbigniew, K., Anna, B., Krzysztof, B. (2010). Application of spectroscopic methods for structural analysis of chitin and chitosan. *Marine drugs*. Vol 8, pp 1567-1636.
- [3] Kelner, A., & Schacht, E. (2005). Tailor-made polymers for local drug delivery: Release of macromolecular model drugs from biodegradable hydrogels based on poly (ethylene oxide). J.Control. Release., 101, 13–20.
- [4] Kiesow, A., Morris, J. E., Radehaus, C., & Heilmann, A. (2003). Switching behavior of plasma polymer films containing silver nanoparticles. *J. Appl. Lett.*, 94, 6988–6990.

4. Conclusion

In this study, Chitosan-silver nanocomposite films were synthesized reduction method. Various bv techniques characterisation also confirmed the synthesis of chitosansilver nanocomposite films. Crosslinked chitosan-silver nanocomposite film showed a slow silver release pattern un-crosslinked relative the to nanocomposite. The synthesized nanocomposite demonstrated higher antibacterial higher activity at concentration against some pathogens. Thus, Chitosan-silver nanocomposite films can be useful in different biological research and biomedical applications including delivery system (wound dressing).

- [5] Lu, S., Gao, W., &Gu, H. Y. (2008).
 Construction, Application and Biosafety Silver Nanocrystalline Chitosan Wound Dressing. *Burns*, 34(5), 623–628.
- [6] Ochei, J. & Kolhatkar, A. (2008) Y. pp. 778-817, Medical Laboratory Science: Theory and Practice.
- [7] Sarkar, A., Kapoor, S., & Mukherjee, T. (2005). Preparation, characterization, and surface modification of silver nanoparticles in formamide. *J Phys Chem*, 109, 7698–7704.
- [8] Shin, H. S., Yang, H. J., Kim, S. B., & Lee, M. S. (2004). Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ-irradiated silver nitrate solution. J. Colloid Interface Sci., 274, 89–94.
- [9] Xu, X., & Zhou, M. (2008). Antimicrobial gelatin nanofibers containing silver nanoparticles. *Fibers Polym*, 9, 685–690.
- [10] Zeng, W., & Fang, C. X. (2004). Novel Method of Preparing

IDOWU M. A. et al

•

Microporous	Membrane	by
Selective	Dissolution	of
Chitosan/Poly	Ethylene	Glycol

Blend Membrane. Journal of Applied Polymer Science, 91(5),2840–2847