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Abstract: This work introduces a three-parameter hybrid model named the
exponentiated half logistic skew-t distribution using the exponentiated half
logistic generalised distributions. The hybrid model is appropriate for modelling
skewed, heavy-and-long-tail datasets. The theoretical properties of the new
model were investigated. Simulation studies performed to evaluate the finite
sample performance of the parameter estimates using selected true parameter
values showed that the estimates approached the true values as the sample size
increased. The hybrid model efficacy, applicability and flexibility were
demonstrated using the Nigeria inflation rate dataset, and the result indicated
that the hybrid model outperformed several competing distributions.
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1.0 Introduction

The skew-t distribution, a skewed
extension of the symmetric Student-t
distribution based on introducing a skew
parameter, is often used in different fields
such as reliability, economy, finance and
volatility analysis. A lot of authors; [1],
[2], [3] and [4, 5] have introduced various
forms of the skew-t distribution as seen in
the literature. Also, several possible
skew-t distribution generalisations like
exponentiated skew-t by Dikko and
Agboola [6], odd exponentiated skew-t
distribution by Adubisi et al. [7],
Balakrishnan skew-t distribution by

Shafiei and Doostparast [8], generalised
hyperbolic skew-t distribution by Aas and
Haff [9], Kumaraswamy  skew-t
distribution by Khamis et al. [10], Beta
skew-t distribution by Shittu et al. [11],
type | half-logistic skew-t distribution by
Adubisi et al. [12], and Beta skew-t
distribution by Basalamah et al. [13] have
been introduced.

However, [14] established a tractable
skewed extension of the symmetric
student-t distribution known as the skew-t
distribution by introducing a scaling
factor on the two degrees of freedom of
the student-t density function introduced
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by Jones [15]. The cumulative
distribution function (cdf) of the skew-t
distribution is given by

GST (X) = %{1‘*'

X
NA+X2 ] (1)
X e (—oo, oo)
The corresponding probability
distribution function (pdf) is given by

A
4t 2
2(2+x )" @

where A controls the skewness.

The cdf of the exponentiated half-logistic
generalised distribution introduced by
Cordeiro et al. [16] is given by

—ax —ax P
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and the corresponding pdf is given by

f(x) = 289 (x;g)[l—G(x;g)]m1
{1—[1—G(x;g)]“}

{1+[1—G(x;g)]a}
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where «,>0are two additional shape

X

p-1

X
B+l

parameters. G(x;¢)andg(X;s) are the

baseline cdf and pdf depending on a
parameter vector ¢ .

In this article, a new generalisation of the
skew-t distribution based on the
exponentiated half-logistic-G distribution
is introduced. The new class of
distribution called the exponentiated half-
logistic skew-t distribution is capable of
fitting skewed, long-tail and heavy-tail
datasets and is more flexible than the
skew-t distribution as it contains the
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skew-t distribution and other important
distributions as special cases. In
distributional theory, heavy-tailed

distributions are continuous probability
distributions whose tails are not bounded
exponentially, and all  long-tailed
distributions are heavy-tailed [17]. This
article focuses on extending the
applicability of the skew-t distribution by
adding a parameter (shape) to increase its
efficacy in modelling financial datasets.
The motivation in developing the new
distribution is to create a more flexible
distribution with right-skewed, left-
skewed, and unimodal features. The new
distribution will analyse the inflation rates
in sub-Sahara Africa, specifically Nigeria
inflation rate. The new distribution can
serve as an alternative error innovation in
modelling and forecasting financial return
series using GARCH models in future
research studies.

The remaining part of this article is
structured as follows: In Section 2, we
define the exponentiated half-logistic
skew-t (EHLsr) distribution. Section 3
derives the series expansions of the
EHLsr density and distribution functions.
Related statistical properties of the new
distribution are presented in section 4. In
Section 5, we derive the estimates of the
unknown parameters using the maximum
likelihood estimation procedure. The
simulation study is conducted to assess
the MLEs consistency and illustration of
the EHLst flexibility and efficacy using
the Nigeria inflation rates dataset.
Conclusion in section 6.

2.0 The Exponentiated Half-Logistic
Skew-T (EHLst) Distribution

The cdf of the three-parameter EHLsr

distribution derived by substituting (1) in

(3) is given as
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and the corresponding pdf is given as

B

F(x,a,5,4) =

b
el
-

a>0, >0, 1>0, xe(-o0,»)
(6)
From now onward, we will denote a
random variable X having pdf (6) by
X 0 EHLg; (£), where & =(a, 5, 4) are the

set of parameters.

The survival function, hazard rate
function (hrf), reversed hazard rate
function (rhrf), cumulative hazard rate
function (chrf) and odds function (Of) are
given, respectively.

(o )|

[l )]

X

s(x,&)=1-
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The graphical structures of the EHLsr
distribution are illustrated using plots
when the parameters are varied. To
understand the effect of each parameter in
determining the overall shape of the
EHLsr density function, some plots which
depict the shape of the density curve are
presented. Figure 1 depicts the shapes of
the EHLsr density function when the
parameter « is varied, and the
parameters 5 and A are fixed. Figure 2

depicts the shapes of the EHLsr density
function when the parameter g is varied

and the parameters « and 4 are fixed.
Figure 3, depicts the shape of the EHLst
density function when the parameter 4 is
varied and the parameters « and g are

fixed. More so, Figure 4 depicts the
hazard function of the EHLsr distribution
at selected parameter values.

The plots indicate that the left and right
tails get lighter and tend to zero as « and
£ approaches infinity, respectively while

the EHLst density curve tend towards a
flat curve as A increases. The plots also
reveal that the hazard rate function can be
increasing, decreasing, and inverted
bathtub shaped.

3.0 Series Expansions

In this section, we derive the series
representations of the EHLst density and
distribution functions. In order to
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density, we expand (6) using the
generalised binomial series
representations:

(1+z)ﬂzg(_1)‘(ﬂ+i“1jzi 7<1, p>0
(12)

(1—z)“=i(—1)’(ﬂi_ljzi lz2|<1 >0
. (13)

Let

i)

~(A+1)
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By applying (12) in quantity A, gives

e e el

(14)
and (13) in quantity B, we have

oz (3]

(15)
The EHLsr density after some algebra
can be written as

4
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(16)
By applying (13) in the quantity C, the
expanded form of the EHLst density is
given as

f (&) =w ;X" (A+ xz){%j (17)
where

Wik =aﬂ/1_ Zm: g:(:!-+)1+1)1 (ﬁ+lj[ﬂ_lJ

! ]

{a(n L+1)—1j

Likewise, the expanded form of the
EHLsr distribution is given as

F(x&)=9,x (A+x° )7IE (18)
where

e (1) (B+k-1)(ak
g2 30 [ \ ](I

4.0 STATISTICAL PROPERTIES

In this section, some basic statistical
properties of the EHLsr distribution are
examined using the established series
expansions (mixture representations) of
the density and distribution functions in
Section 3.

4.1Quantile function

The quantile function, Q(u)=F"(u) of
X can be derived by inverting (5). The
quantile function Q(u) for ue(0,1) is

given as
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(19)

The median of X is obtained by setting
u=0.5in (19). Given that the uniform
random variables are easily generated in
most statistical software, the quantile
function is useful in generating the
EHLST random variables. The Bowley
skewness [18] and Moors kurtosis [19]
for EHLst can be examined by using the
quantile function (17) as follows:

)2l
of3)-oli)
ORI H
[s)-o[3)

where  Q()is the EHLsr quantile

function. The Bowley skewness and
Moors kurtosis measures do not depend
on the moments of the distribution and
are almost insensitive to outliers. Table 1,
provides some numerical values of the
median, 25" and 75" percentiles,
interquartile range (IQR), skewness and
kurtosis for some selected parameter
values. It is observed that as A increases
across increasing values of « and g ; the

skewness, kurtosis, median, 25" and 75"
percentiles while the IQR decreases.

and
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4.2 Moment

In this subsection, we derive the rt
ordinary moment for the EHLsr
distribution. Let X OEHLg (£) be a

random variable then the r'™ moment of X
about the origin is expressed as

Ix f (x,&)dx (21)
By msertlng (17) in (21), we have

. =E(X

'[x kX /1+x)( de

(22)
The moment obtained after some algebra
is given as

, . k+1 2
i =B(x") w2+ B[ T 2T

(23)
and the characteristic function expressed
as

||
M8

2 2
(24)

72 (r+k+1 2—r]

4.3 Order Statistics
Let X, X,,...,X,be a random sample

from a continuous distribution and
Xy < X, <...< X, are order statistics

obtained from the sample. According to
[20], the pdf, f, (x)of the p™ order
statistics X, is defined as

(o= 30[CM] T [1-6(]”
" B(p,n-p+1)

(25)
where, G(x) and g(x) are the cdf and
pdf of the EHLsr distribution
respectively, and B(..) is the beta
function. Since 0<G(x)<1for x>0
using the binomial theorem (13) on

[1-6(]"

, we have
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£ (%)= T_:(_l) { j[G ]p+| .

B(p,n—p+1)
(26)
Therefore, inserting (5) and (6) in (26)
and expanding based on (13), the p™
order statistics for EHLsr distribution is
given as

"(1+x2) 7]

’9i.j,l.km
fon(X)= B(pn—p+) (27)
where
B I+i+j+k _
lgi‘j'l'k'm :aﬂlloﬁ i=0 JkZ:O ) (n I pj
){ﬂ(pﬂ) j(ﬂ(pﬂ)ﬂ]
i j

X[a(i+ L+1)—1][r|;]

The distribution of the minimum and
maximum order statistics can be obtained
from (27) by setting p=1and p=n.
Furthermore, the r" moment of the p™
order statistics for EHLst distribution is
defined as

E(X;m):f:x“fp:n(x;g)dx (28)
By inserting (27) in (28), we have

- 1 * K (
E(Xp:n)—m%,u,k,mj (/HX )
(29)

So, after some algebraic simplifications,
the r'™ moment of the p'" order statistics is
given as

3+mw

Jdx

- 1 Tl M+l 2-r
E(X”:“)_B(p,n—p+1)9”""km/1 B( 2 2 ]
(30)
4.4 Entropies
The entropy of a random variable X is a
measure of the variation of uncertainty.
According to [21], the Rényi entropy of a

6
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random variable with pdf f(x) is given
as

=—Iogj dx, o6>0 and

o#1 (31)

By inserting (6) in (31), applying the
binomial theorem and some algebraic
simplification, the Rényi Entropy of
EHLsr distribution is given as

1-36
q+1 36-1
IR(,;)=1_|09[ & kgt B( TS

(32)
where,

o= (aB2) Z (1)'+1+k[ (ﬁ+})+i-1]

iikg I

[52/3] 1)J(a(i+j;§)_5j(2}

the g-entropy [22] is

Furthermore,
defined as

Hg(x)zéi_luog(l_“% F(x) de,
o>0and 60

(33)
Therefore, the g-entropy of EHLsy
distribution is given as

-36
q+1 35-1
o o(55)

Ha‘(x): 5-1

(34)

5.0 Parameter Estimation

5.1 Maximum Likelihood Estimation
The maximum likelihood estimation
(MLEs) of the unknown parameters for
EHLsr distribution are determined based
on the complete samples. Let
X, X,,..., X, be the observed values from

the EHLsr distribution with unknown
parameter vector & =(a,f,2) . The log-

likelihood function, say 1, of EHLst
distribution is given as
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I=nlna+nng+nin1-3/2) In(1+x?)
i=1

+(a—1)iz;:ln(z + [5’—1)iln(1—(zi )“)

i=1

_(ﬁ+l)iZ:1:In(1+(zi ))

(35)

where z, = 1—1 1+ X
2\ YA+ X

Taking the partial derivative of the log-
likelihood 1, with respect to «,8 and 24

equating to zero, the following normal
equations are obtained as follows:

A Sin(a)- (s, L)

= {l—(Zi)a}
0 (z)"In(z)
Lf+1 =0
( ).2:1: {1+(zi)a}
(36)
%’!)=_+Izn1:|n(1—(zi)“)—iznlln{1+(2.)a}=0
(37)
and
o) ' n 3% 1
W‘TE;(MXEV
a-1 ” Xaz
i)
(-1 X&)
i=14(ﬂ+Xi2) (Zi){1+(zi)a}
n x(z,)"
—a(p+1 32 =0
( );4(ﬂ+xg)/(zi){1+(zi)“}
(38)

The non-linear equations (36), (37) and
(38) are solved numerically via iterative
methods using statistical software such as
R, MATLAB, Maple.
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5.2 Simulation Study

In this section, we evaluate the
performance of the maximum likelihood
estimation (MLE) procedure for the
EHLsr model using the Monte Carlos
simulation study. The performance of the
estimators is evaluated through the
average estimates (MEs), absolute bias,
variance, mean square errors (MSE), and
root mean square errors (RMSE) for
different sample sizes. We generated

10,000 samples from the EHLsr
distribution, each sample size
n=30,50,150,250,300,1000  for  selected

values ¢ =(a, 8,4)=(05,09,05), (1.2,1.0,0.7),
(151.2,10),and (2510,1.7). The absolute
bias, MSE and RMSE are computed for
S=4,p, A using

10000 , .
—— 3§, —s)‘
10000 &

1 10000

€. = 15000 2 (S-3)

1 o000 2
SE, =Jm > (Si-3)

The numerical results in Tables 2-5
shows that the MLEs are closer to the
true values of the EHLsr parameters.
More so, the absolute bias, MSEs and
RMSEs for each parameter decreases as
the sample size increases. The
simulations show the compatibility of the
MLEs with the consistency property.

AbsBias, =

(39)

5.3 Application to the Inflation Rate
Dataset

In this section, we provide an application
using a real dataset to illustrate the
flexibility, applicability and superiority
of the EHLsr distribution. The dataset is
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the Nigeria inflation rates as recorded by
the central bank of Nigeria. This dataset
contains 207 all items (year on change)
inflation rates for each month from
January 2003 to April 2020. The Nigeria
inflation rates dataset can be sourced
from the central bank of Nigeria web
database at www.cbn.gov.ng.

Table 6: Descriptive statistics of the
Nigeria inflation rates dataset.

N Mean SD sk Ks

207 11.96 4.27 0.92 1.55

Table 6 shows the descriptive statistics
for the Nigeria inflation rate dataset. The
number of observations indicators for the
first four moments (mean, standard
deviation (SD), skewness(sk),
kurtosis(ks)) of the inflation rate dataset.
The dataset is unimodal, moderately
right-skewed, with a leptokurtic form of
the histogram. Hence, the EHLsy
distribution can handle such a dataset
given its shape properties, as depicted in
Figures 1-4.

The purpose of the application is to
compare the fitting performance of the
EHLsr distribution with some
competitive distributions, i.e., based on
extensions of the Fréchet, Pareto, Lomax,
Burr xii and Weibull distributions. The
following  competitive  distributions
considered are the type-l half logistic
skew-t (TIHLst) distribution [12], half
logistic skew-t (TIHLst) distribution
[23], skew-t (ST,) distribution [14],
exponentiated ~ half-logistic ~ Lomax
(EHLL) distribution [24], exponentiated
generalized skew-t (EGST) distribution
[25], exponentiated Fréchet (EXF)
distribution [26],
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Figure 1: The EHLsr density function (pdf) plots for some selected
(o =varied,f =11 =0.5) parameter values.

Figure 2: The EHLsr density function (pdf) plots for some selected
(a=2,B=varied, . =1) parameter values.
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Figure 3: The EHLsr density function (pdf) plots for some selected
(=2,p=15x=varied) parameter values.
= / = |
: /
“4/

some  selected

- /
Figure 4: The EHLsr hazard function plots for
(a=varied,B = varied, . = 0.5) parameter values.
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Table 1: Median (M), 25" and 75" percentiles, skewness (Sk), kurtosis (Ks) and IQR.

A a B M 25t 75t Sk Ks IQR

05 03 02 21203 0.5822 9.0356 0.6361 3.0372 8.4534
06 04 0.6549 0.1046 1.6828 0.3027 0.8756 1.5782
0.7 0.6 0.5083 0.0254 1.2837 0.2325 0.6208 1.2583
1.2 1.0 0.1439 -0.2278 0.5370 0.0281 0.0767 0.7648
1.7 12 -0.0340 -0.3878 0.2757 -0.0665  -0.2205 0.6636

06 03 02 23227 0.6378 9.8980 0.6361 3.0372 9.2602
06 04 0.7173 0.1146 1.8435 0.3027 0.8756 1.7289
0.7 0.6 0.5568 0.0278 1.4062 0.2325 0.6208 1.3783
1.2 10 01576  -0.2495 0.5883 0.0281 0.0767 0.8378
1.7 12 -0.0372 -0.0425 0.3021 -0.0665  -0.2205 0.7269

07 03 0.2 25088 0.6889  10.6911  0.6361 3.0372  10.0022
06 04 0.7749 0.1238 1.9912 0.3027 0.8756 1.8674
0.7 0.6 0.6014 0.0301 1.5189 0.2325 0.6208 1.4888
1.2 10 01702 -0.2695 0.6354 0.0281 0.0767 0.9050
1.7 12 -0.0402 -0.4589 0.3263 -0.0665  -0.2205 0.7852

15 03 02 3.6725 1.0084  15.6501  0.6361 3.2119  14.6417
06 04 11343 0.1812 2.9148 0.3027 1.0642 2.7336
0.7 06 0.8804 0.0440 2.2234 0.2325 0.7841 2.1793
1.2 1.0 0.2492 -0.3945 0.9302 0.0281 0.0767 1.3248
17 12 -0.0589 -0.6718 0.4776 -0.0665  -0.2205 1.1494

Table 2: Simulation results for the EHLst distribution

(a =05,=091= 0.5)

n Par ME AbsBias Var MSE RMSE
30 a 0.5690 0.0690 0.0445 0.0492 0.2219
g 1.1566 0.2566 0.1489 0.2147 0.4634

A 0.7127 0.2127 0.5963 0.6415 0.8010

50 a 0.5378 0.0378 0.0192 0.0206 0.1436
g 1.0851 0.1851 0.0628 0.0971 0.3116

A 0.6087 0.1087 0.2180 0.2298 0.4794

150 a 0.5108 0.0108 0.0043 0.0044 0.0662
p 1.0249 0.1249 0.0140 0.0296 0.1720

A 0.5303 0.0303 0.0327 0.0336 0.1832

250 a 0.5066 0.0066 0.0024 0.0025 0.0497
g 1.0144 0.1144 0.0081 0.0211 0.1454

A 0.5184 0.0184 0.0171 0.0174 0.1319

300 a 0.5054 0.0054 0.0020 0.0020 0.0448
g 1.0119 0.1119 0.0066 0.0191 0.1384

A 0.5149 0.0149 0.0140 0.0143 0.1194

1000 a 0.5014 0.0014 0.0006 0.0006 0.0240
g 1.0030 0.1030 0.0019 0.0125 0.1117

A 0.5046 0.0046 0.0039 0.0039 0.0623

11
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Table 3: Simulation results for the EHLst distribution
(¢=12,3=1.01=0.7)
n pPar ME AbsBias Var MSE RMSE
30 a 1.5449 0.3449 0.4415 0.5604 0.7486
B 1.4410 0.4410 0.7140 0.9085 0.9532
A 1.2609 0.5609 1.3732 1.6878 1.2992
50 a 1.4442 0.2442 0.3010 0.3606 0.6005
B 1.2964 0.2964 0.4115 0.4994 0.7067
A 1.0974 0.3974 0.8529 1.0108 1.0054
150 a 1.2904 0.0904 0.0899 0.0981 0.3132
B 1.0979 0.0979 0.0867 0.0963 0.3103
A 0.8388 0.1388 0.1900 0.2093 0.4575
250 a 1.2542 0.0542 0.0478 0.0508 0.2254
B 1.0557 0.0557 0.0400 0.0431 0.2076
A 0.7796 0.0796 0.0861 0.0924 0.3040
300 a 1.2457 0.0457 0.0374 0.0394 0.1986
B 1.0459 0.0459 0.0300 0.0321 0.1792
A 0.7657 0.0657 0.0660 0.0703 0.2651
1000 a 1.2155 0.0155 0.0096 0.0099 0.0994
B 1.0145 0.0145 0.0067 0.0069 0.0832
A 0.7219 0.0219 0.0148 0.0152 0.1235
Table 4: Simulation results for the EHLst distribution
(a =15p=121= 1.0)
n Par ME AbsBias Var MSE RMSE
30 a 1.8705 0.3705 0.5020 0.6393 0.7996
B 1.4449 0.2449 0.7459 0.8059 0.8977
A 1.6491 0.6491 1.7722 2.1936 1.4811
50 a 1.7647 0.2647 0.3445 0.4146 0.6439
Yij 1.3006 0.1006 0.4233 0.4334 0.6584
A 1.4718 0.4718 1.1511 1.3737 1.1721
150 a 1.6985 0.1085 0.1159 0.1276 0.3573
Yij 1.1082 0.0918 0.0925 0.1009 0.3176
A 1.1875 0.1875 0.3046 0.3397 0.5828
250 a 1.5712 0.0712 0.0634 0.0684 0.2616
Yij 1.0660 0.1340 0.0435 0.0615 0.2479
A 1.1183 0.1183 0.1494 0.1634 0.4042
300 a 1.5626 0.0626 0.0518 0.0558 0.2362
B 1.0567 0.1433 0.0346 0.0551 0.2348
A 1.1019 0.1019 0.1201 0.1305 0.3612
1000 a 1.5326 0.0326 0.0145 0.0156 0.1249
Yij 1.0263 0.1737 0.0084 0.0386 0.1964
A 1.0504 0.0504 0.0298 0.0323 0.1798
12
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Table 5: Simulation results for the EHL sy distribution
(¢=25p=10,41=17)

n Par ME AbsBias Var MSE RMSE

30 a 2.8609 0.3609 0.7223 0.8525 0.9233

B 1.3901 0.3901 0.8025 0.9547 0.9771

A 2.4215 0.7215 3.5534 4.0739 2.0184

50 a 2.7297 0.2297 0.4341 0.4869 0.6978

B 1.2328 0.2328 0.3801 0.4342 0.6590

A 2.1701 0.4701 1.9601 2.1811 1.4769

150 a 2.5746 0.0746 0.1306 0.1362 0.3690

B 1.0664 0.0664 0.0600 0.0644 0.2538

A 1.8471 0.1471 0.4214 0.4430 0.6656

250 a 2.5432 0.0432 0.0753 0.0771 0.2777

s 1.0372 0.0372 0.0307 0.0321 0.1792

A 1.7845 0.0845 0.2273 0.2345 0.4842

300 a 2.5383 0.0383 0.0629 0.0644 0.2538

B 1.0322 0.0322 0.0251 0.0261 0.1616

A 1.7733 0.0733 0.1846 0.1899 0.4358

1000 a 2.5121 0.0121 0.0188 0.0190 0.1378

B 1.0098 0.0098 0.0066 0.0067 0.0818

A 1.7239 0.0239 0.0502 0.0508 0.2254
exponentiated generalized Pareto  for handling such a dataset, given the

(EXGP) distribution [27], Weibull Pareto
(WEP) distribution [28], exponentiated

Weibull  (EXW) distribution  [29],
exponentiated Burr Xii (EBX)
distribution [30], Gompertz Lomax

(GOLO) distribution [31].

Figure 5 presents the histogram for the
Nigeria inflation rates dataset and the
corresponding normal Q-Q, total test
time (TTT), and hazard rate plots. The
histogram shows a high frequency of low
inflation rates and a low frequency of
high inflation rates in Nigeria. The curve
in the TTT plot gives a positive insight
that the EHLsy distribution is appropriate

URL: http://journals.covenantuniversity.edu.ng/index.php/cjpl

hazard rate function monotonic feature.
The goodness-of-fit measures include the
Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC),
Consistent Akaike Information Criterion
(CAIC) and Hannan-Quinn information
criterion (HQIC), are used for model's
comparison. We also consider the
negative log-likelihood (-LL), Anderson
Darling (ANDA), Cramer-von Mises
(CVM), Kolmogorov-Smirnov  (K-S)
statistic and its p-value. The distribution
is of a good fit if all the goodness-of-fit
results are smaller and the p-value is
larger.
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Figure 5: Histogram (upper left), Q-Q plot (upper right), TTT plot (lower left) and
Hazard rate plot (lower right).

Table 7: MLEs and SEs of the distribution parameters.

DISTRIBUTION Parameter Estimates
EHLST (at, 8, A) 4.414 143.603 406.095 -
(0.962) (94.829) (174.637)
(0.055) (17.336)
(20.486)
ST(A) 273.566 - - -
(34.406)
(2.772) (1.580) (2.711) (0.004)
EGST (U, v, A) 3.860 188.632 323.854 -
(0.654) (84.587) 114.235
EXF (a, 2,2) 69.320 0.774 39.769 -
(28.127) (0.102) (21.380)
EXGP (a,b) 462.983 105.227 - -
(156.931) (72.340)
WEP (¢, 3,0) 6.268 0.463 1.499 -
(1.336) (0.092) (0.634)
EXW (at, 7, A) 4.244 1.568 0.131 -
(1.737) (0.263) (0.027)
EBX (a, ,6) 1.420 190.745 1.636 -
(0.300) (49.670) (0.379)
GOLO (6, 7,a,b) 0.0066 4.847 0.678 0.480
(0.0020) (1.393) (0.200) (0.106)
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Table 8: Goodness-of-fit measures.

Model -LL AIC CAIC BIC HQIC CVM ANDA K-S p-value
EHLst 58657 1179.14 117926 1189.15 1183.19 0.133 0.899 0.07 0.291
TIHLST 78247 156895 1569.01 1575.63 1571.65 0.136 0.928 0.45 2.2¢-16
HLST  792.79 158758 1587.60 1590.92 1588.93 0.139 0.915 052 2.2e-16

ST 862.55 1727.10 1727.12 1730.43 172845 0.152 0.952 063 2.2e-16
EHLL  589.93 1187.87 1187.06 1201.22 119327 0208 1.411 0.08 0.173
EGST  587.25 1180.49 1180.61 1190.51 118454 0.139 0.941 0.072 0.234
EXF 587.06 1180.13 1180.25 1190.14 1184.18 0.161 1.079 0.075 0.197
EXGP 128272 256944 256950 2576.11 2572.14 0.146 0972 0.938 2.2¢-16
WEP 587.83 1181.66 1181.78 1191.68 118571 0.199 1.282 0.08 0.124
EXW 586.83 1179.26 1179.37 1189.27 1183.30 0.148 0.970 0.07 0.276
EBX 623.73 1253.46 125358 1263.47 125751 0.824 5335 0.13  0.0006
GOLO  599.93 1207.85 1208.05 1221.20 121325 0.479 2.876 0.12  0.0076

The MLEs, standard error (SE), and the
goodness-of-fit measures of the fitted
distributions are arranged in Tables 7
and 8, respectively. Based on the
numerical results in Table 8, the EHLst
distribution is of best fit, with the
smallest -LL, AIC, CAIC, BIC, HQIC,
CVM, ANDA and largest p-value. The
estimated density and distribution
functions fits are depicted in Figure 4.
Figure 6 shows that the EHLsr
distribution fit seems more acceptable
in comparison to the other competing
distributions; the peaked form of the
histogram is well captured given the
leptokurtic nature of the EHLsr
distribution. Lastly, Table 9 presents
the confidence intervals for the EHLst
parameters.

URL: http://journals.covenantuniversity.edu.ng/index.php/cjpl

Table 9: Confidence intervals for the
EHLst parameters.

Cl o
95% [2.2849 4.3311]
B
[20.3281 112.6559]
2

[77.0821 396.276]

6.0 Conclusion

This article presents a new three-
parameter distribution known as the
exponentiated half logistic skew-t
distribution using the exponentiated
half logistic family of distributions. The
flexibility of the skew-t distribution is
improved using this family of
distributions. This mixture
representation is important in deriving
several structural properties of new
distribution such as the ordinary and
incomplete moments, quantile function,
entropy, characteristic function and
order statistics. The new distribution
parameter estimates are derived using
the maximum likelihood estimation
(MLE) procedure and simulation study
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Figure 6: Fitted distributions comparison plots.

showed that the MLE performed well
in estimating the parameters of the new
distribution. The application using the
Nigeria financial dataset indicates that
the exponentiated half logistic skew-t
distribution ~ outperformed  eleven
competing distributions. We conclude
that the EHLsr distribution is a flexible
model when modelling skewed and
heavy tail dataset, and should attract
wider applications in modelling such
datasets. Future research study will
compare the performance of the
exponentiated half logistic skew-t as an
innovation distribution to existing
innovation distributions in modeling
and predicting volatility using GJR-

GARCH framework.

Conflicts of interest
Authors declare that there are no
conflicts of interest.

Acknowledgement
We acknowledge Federal University
Wukari and Abubakar Tafawa
Balewa University, Nigeria for
creating conducive environments for
this research work.

References

[1] Johnson, N. L. Kotz, S. and
Balakrishnan, N. (1995). Continuous

16

URL: http://journals.covenantuniversity.edu.ng/index.php/cjpl


http://journals.covenantuniversity.edu.ng/index.php/cjpls

Adubisi et al., 2021

Univariate Distributions, vol. 2, 2nd
edn. New York: Wiley.

[2] Sahu, S. K., Dey, D. K. and Branco,
M. D. (2003). A new class of
multivariate skew distributions with
applications to Bayesian regression
models. The Canadian Journal of
Statistics, 31, 129-150.

[3] Azzalini, A. and Capitanio, A.
(2003). Distributions generated by
perturbation of symmetry  with
emphasis on a multivariate skew-t
distribution. J. Roy. Statist. Soc., B, 65,
367-389.

[4] Jones, M. C. (2001). A skew t
distribution.  In  Probability  and
Statistical Models with Applications
(eds C. A. Charalambides, M. V.
Koutras and N. Balakrishnan), London:
Chapman and Hall, pp. 269-277.

[5] Jones, M. C. (2004). Families of
distributions  of  order  statistics.
Statistical Methodology, 6, 70-91.

[6] Dikko, H. G and Agboola, S.
(2017). Exponentiated Skew-t
distribution.  Transactions of the
Nigerian Association of Mathematical
Physics, 4, 251-260.

[7] Adubisi O. D., Abdulkadir, A. and
Chiroma, H. (2021). A two-parameter
odd exponentiated skew-t distribution
with J-shaped hazard rate function.
Journal of Statistical Modeling and
Analytics. 1(1): 26-46.

[8] Shafiei, S. and Doostparast, M.
(2014). Balakrishnan skew-t
distribution and associated statistical
characteristics. Comm. Statist. Theory
Methods, 43, 4109-4122.

[9] Khamis, K. S., Basalamah, D.,
Ning, W., and Gupta, A. (2017). The
Kumaraswamy Skew-t Distribution and
Its Related Properties. Communications
in  Statistics -  Simulation and

CJPL (2021)

Computation, DOl:
10.1080/03610918.2017.1346801

[10] Aas, K., and Haff, I. H. (2006).
The Generalised Hyperbolic Skew
Student's  t-distribution. Journal of
Financial Econometric, 4(2): 275-309.
[11] Shittu, O. I., Adepoju, K. A. and
Adeniji, O. E. (2014). On the Beta
Skew-t distribution in modelling stock
return in Nigeria. International Journal
of Modern Mathematical Sciences. 11
(2): 94-102.

[12] Adubisi O. D., Abdulkadir, A.,
Chiroma, H. and U. F. Abbas (2021).
The Type | Half Logistic Skew-t
Distribution: A Heavy-Tail Model with
Inverted Bathtub Shaped Hazard Rate.
Asian Journal of Probability and
Statistics. 14(4): 21-40.

[13] Basalamah, D., Ning W. and
Gupta, A. (2018). The beta skew-t
distribution and its properties. Journal
of Statistical theory and practice, 12,
837-860.

[14] Jones, M. C. and Faddy, M. J.
(2003). A skew extension of the t
distribution, with applications. J. Roy.
Statist. Soc., Ser. B., 65 (2): 159-174.
[15] Jones, M. C. (2002). Student's
simplest distribution. The Statistician,
51(1): 41-49.

[16] Cordeiro, G. M., Alizadeh, M. and
Ortega, E. M. M. (2014). The
exponentiated half-logistic family of
distributions: Properties and
Applications, Journal of Probability and
Statistics. Article ID 864396.

[17] Asmussen, S. R. (2003). "Steady-
State Properties of GI/G/1". Applied
Probability and Queues. Stochastic
Modelling and Applied Probability. 51,
266-301.

URL: http://journals.covenantuniversity.edu.ng/index.php/cjpl 17


http://journals.covenantuniversity.edu.ng/index.php/cjpls

Adubisi et al., 2021

[18] Kenney, J. F. and Keeping, E.
(1962). Mathematics of Statistics. D.
Van Nostr and Company.

[19] Moor, J. J. (1988). A quantile
alternative  for Kurtosis. The
Statistician, 37, 25-32.

[20] David, H. A. (1981). Order
statistics, John Wiley & Sons, New
York.

[21] Rényi, A. (1961). Proceeding of
the fourth Berkeley symposium on
mathematical statistics and
probabilities. First Edition, University
of California Press Berkeley.

[22] Tsallis C. (1988). Possible
generalisation of Boltzmann-Gibb's
statistics. Journal of statistical Physics.
52 (1-2): 479-487.

[23] - (2022). Half-logistic
skew-t distribution: Properties and
Application (unpublished).

[24] Jamal, F., Reyad, H. M., Ahmed,
S. 0., Shah, M. A. A. & Altun, E.
(2019). Exponentiated half-logistic
Lomax distribution with properties and
application. Ned University Journal of
research. XVI. (2), 1-11.

[25] Dikko, H. G. and Agboola, S.
(2018). Statistical properties of the
exponentiated  generalised  skew-t
distribution. Journal of the Nigerian

CJPL (2021)

Association of Mathematical Physics.
42, 219-228.

[26] Nadarajah S. and Kotz S. (2003).
The exponentiated Fréchet distribution.
Interstat Electron. J. 14, 1-7.

[27] Lee S. Y. and Kim J. H. T. (2019).
Exponentiated  Generalised  Pareto
distribution: Properties and applications
towards extreme  value theory.
Communication in Statistics-Theory
and methods. 48 (8), 2014-2038.

[28] Alzaatren A. and Famoye F.
(2013). Weibull-Pareto distribution and
its applications. Communication in
Statistics-Theory and methods. 42 (9),
1673-1691.

[29] Pal M., Ali M. M. and Woo J.
(2006). Exponentiated Weibull
distribution. Statistica. 66 (2), 139-147.
[30] Kumar D., Saran J. and Jain N.
(2017). The exponentiated burr xii
distribution: moments and estimation
based on lower record values. Sri
Lankan Journal of Applied Statistics.
18 (1), 1-18.

[31] Oguntunde P. E., Khaleel M. A,
Ahmed M. T., Adejumo A. O. and
Odetunmibi  O. A. (2017). New
generalisation of  the Lomax
distribution with increasing, decreasing
and constant failure rate. Modeling and
Simulation in Engineering. 2017, 1-6.

URL: http://journals.covenantuniversity.edu.ng/index.php/cjpl 18


http://journals.covenantuniversity.edu.ng/index.php/cjpls

