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Abstract: The Thermo-diffusion solution effects a stagnation point flow of a nanofluid 

with convection using. Adomian Decomposition Method (ADM) is presented. The 

Partial differential equation representing the problem was reduced to an ordinary 

differential equation by introducing some similarity transformation variables. The 

transformed equations were solved using the ADM and the results were compared with 

existing results in the literatures. There is a good agreement between the method and 

the existing one, which indicate reliability of the method. The physical parameters that 

occurred in the solutions such as magnetic parameter, thermal Grashof numbers, 

concentration Grashof numbers, nano Lewis number, velocity ratio, Prandtl number 

were varied to determine their respective effects. It was observed that when the wall 

velocity is higher than the free stream velocity ( )1A , the fluid velocity drop and rises 

when velocity at free stream is higher than the wall velocity ( )1A .   

 

Keywords: Adomian decomposition method, Nanofluid, Nanoparticles, Solutal 

concentration, Velocity ratio, Grashof number. 

 

1.0 Introduction 

Crane [1] analyses the problem of 

stagnation point flow near a solid surface. 

Immediately the study was concluded, 

many other researchers went into the flow 

of boundary layers incorporating several 

other parameters [2, 3]. 

 

Works on fluids conducted electrically are 

very important due to their applicability in 

modern metallurgy and metalworking 

processes. Nanofluids with incorporated 

magnetic fields are used to control the flow 

and heat transfer by regulating the velocity 

of the fluid. Mahapatra and Gupta [4] 

Examine the stagnation point flow of 

MHD over a stretching sheet via numerical 

simulations. The stagnation point flow of a 

magnetohydrodynamic nanofluid was 
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depicted by [5] using the classical Runge-

Kutta method. Several other analyses on 

MHD nanofluid are presented in [6, 7] and 

references therein. Choi et al.[8] presented 

a study that depicted that the conventional 

fluids thermal conductivity can be 

increased by adding nanoparticles to the 

base fluid, which also incorporate some 

other thermal properties. In electronic 

cooling, double plane windows, heat 

exchanger. These new enhancements can 

be seen practically. Buongiorno [9] 

showed a comprehensive nanotechnology-

based fluid model that depicted thermal 

properties' advantages over base fluid. A 

better and more encompassing model was 

developed, and nanofluid's convective 

properties were fully discussed. After all 

these developments in nanofluid, the 

boundary layer flow over a stretching sheet 

was first studied by [10] using the model 

of [11, 12]. Mehta and Kataria [17] 

presented a study of heat 

generation/absorption effect on unsteady 

natural convective MHD second-grade 

fluid flow past an oscillating vertical plane 

in the presence of thermal radiation and 

chemical reaction. They found out that 

heat generation increases the fluid 

temperature, increasing the fluid velocity. 

More extensive works as contained in the 

works of [18], [19], [20], [21]. 

 

Nanofluid is an improved heat transfer 

medium, having nanoparticles (1–100 nm) 

that are stably and uniformly distributed in 

a base fluid. These distributed 

nanoparticles, generally a metal or metal 

oxide, greatly enhance the nanofluid's 

thermal conductivity, increasing 

conduction and convection coefficients, 

allowing for more heat transfer [13]. 

 

This study is a new advancement in the 

literature in which the analytical study of 

thermo-diffusion effects of a stagnation 

point flow of a nanofluid with convection 

is presented. The main objectives are to 

obtain the problem's solution at all points 

using the Adomian decomposition method 

to present the effects of all the physical 

parameters that appear in the solutions to 

the flow. 

Generally, this work consists of 5 different 

sections in which section I is the general 

introduction of the work. Section II present 

the problem formulation, section III 

presents the methodology employed to 

obtain the solutions, section IV describes 

the results and their respective discussion 

and section V is the conclusion.   

2.0 Materials and Methods 

2.1 Problem Formulation  

Considering an incompressible 2- 

dimensional Magnetohydrodynamic 

stagnation point flow of a nanofluid 

towards a stretching sheet with wall 

temperature TW, solutal concentration CW, 

nanoparticle concentration w  , and larger 

values of the stretching sheet, respectively. 

Following the formulation in [14] with 

natural convection, the governing 

equations for continuity, momentum, 

temperature, solutal and nanoparticle 

concentrations are written as follows: 

0
u v

x y

 
+ =

 
                                       (1)                                                                                                                                        
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             (4)                                                          

 

2 2

2 2

2 2
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B

T

u v D
x y x y
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T x y
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  (5)    

                                  

Subject to the boundary condition: 

,   0,  

,  C= C ,  

=   0

,  ,

C C , =   y

w

w w

w

u U ax v

T T

y

u U bx T T

 

 

 

 

= = = 


=



= 
= = =

= →

       (6) 

Where velocity along  and x y  axes are

 and u v  respectively,   is the density of 

the base fluid,   is the kinematic viscosity, 

σ is the electrical conductivity, m is the 

heat diffusivity, TK
 is the heat-

distribution ratio, g acceleration due to 

gravity,   volumetric coefficient of 

thermal expansion, TCD
 is the Duffour 

diffusivity, 0B
external magnetic field, 

CTD
is the Soret Diffusivity, pC

 is the 

specific heat capacity at constant pressure, 

BD
 is the Brownian diffusion coefficient, 

TD
 is the thermospheric diffusion 

coefficient and 

( )

( )

p

f

c

c





=

 is the ratio 

between the effective heat capacity of the 

fluid with sD
as the solutal diffusivity, 

  and  wU U  are the wall velocity and 

free stream velocity respectively. 

In other to reduce (1) - (6)  into ODEs, the 

following similarity transformational 

variables are defined as follows:    

                                  

( )

( )

/,   ,   

, ,

,

w

w w

a
y u axf

T T
v a f

T T

C C
s

C C

 


  

 


 





 

 

= =

−
= − =

−

− −
= =

− −

                        

(7) 

 where , ( )f  , ( )  , ( )s    ( )   are 

the dimensionless fluid distance, 

velocity, temperature, solutal and 
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nanoparticle concentrations. 

From (7), we have the following 

transformation: 

( )/

/ /

, ,

 

a
y u axf v a f

u u a
axf

y y

  




 

= = = −

  
= =

  

      (8)                     

Introducing equation (8) into equations 

(1) to (6), the PDEs reduces to  

( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )
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where 

( )
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are magnetic parameter, thermal Grashof 

number, solutal concentration Grashof 

number, velocity ratio, Prandtl number, 

Brownian motion, thermophoresis 

parameter, modified Dufour parameter,  

Lewis number, Dufour solutal Lewis 

number, nano Lewis number. 

 

2.2 Methodology 

The method of ADM is employed to 

obtain the solution of problem (9) by 

letting 

 
3 2

1 23 2
  and  

d d
L L

d d 
= =  and from 

the problem (9), we have 
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Introducing the operators into (10) we 

have 
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   (11)                                                                                                                                

Introducing the polynomials in [15] 

into (11), we have 
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(14)                                 

are the initial guesses.    

 

3.0 Results 

      The results obtained from section 3 

above are presented and discussed in 

this section. Maple 16 software was 

used to compute the integrals and also 

to plot the graphical solutions 

presented in this section Table 1 and 

Table 2 show the validation of the 

present method with the existing 

method in the literature. A good 

agreement is observed among these 

methods. The slight difference results 

from the analytical method employed, 

which gives results at all points. 

Figure 1 shows the effect of the 

velocity ratio on the velocity profile. It 

is an observer that when the free stream 

velocity is lower than the stretching 

sheet (A=0.8, 0.4), the velocity drops 

below 1 and rises above when 

otherwise ( A= 2.8, 2.1, 1.4) [14]. 

Figure 2 shows the effects of the 

thermal Grashof number on the 

velocity profile. As the Grashof 

number increases, the velocity also 

increases due to the possessed's 

buoyancy effect.  

Figure 3 shows the effects of solutal 

grashof number on the velocity profile. 

It is observed that as the solutal 

Grashof number is enhancing, the 

velocity profile is also increasing. 

Figure 4 is the variation of the 

magnetic parameter on the velocity 

profile, and it is observed that as the 

magnetic parameter increases, the 

velocity profile reduces due to the drag 

like force present in the magnetic field 

[20]. Figures 5 to 6 shows the effects of 

Prandtl number on temperature and 

nanoparticle concentration profiles. As 

the Prandtl number increases, the 

temperature of the fluid reduces while 

the nanoparticle concentration is 

enhancing [14].  

Figures 7 to 8 are the graphs of 

Brownian motion parameters on the 

fluid temperature and nanoparticle 

concentration profiles. It is seen that as 

the Brownian motion parameter 

increases, both fluid temperature and 

nanoparticle concentration also 

increase. 

Figures 9 to 10 are the graphs of 

thermophoresis parameters on the fluid 

temperature and nanoparticle 

concentration profiles. It is seen that as 

the thermophoresis parameter 

increases, both fluid temperature and 

nanoparticle concentration also 

increase [13]. Figures 11 to 13 display 

the effects of modified Dufour number 
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on the fluid temperature solutal and 

nanoparticle concentrations, 

respectively. As the modified Dufour 

number increases, the temperature and 

the solutal concentration increase 

while the nanoparticle concentration 

profile is a reduction agent. Figure 14 

show the effects of Lewis number on 

solutal concentration profile, and it is 

observed that as the Lewis number 

increases, solutal concentration profile 

reduces. Figure 15 show the effects of 

nano Lewis number on nanoparticle 

concentration profile, and it is 

observed that as the Lewis number 

increases, nanoparticle concentration 

profile reduces [14]. Figure 16 presents 

the Dufour solutal Lewis number 

variation on the solutal concentration 

profile. As the Dufour solutal Lewis 

number increases, the solutal 

concentration profile also thickens 

[14]. 

 

Figure 1: Variation of velocity ratio on velocity  

 

Figure 2: Variation of thermal Grashof number 

on velocity 

 

 

Figure 3: Variation of concentration Grashof 

number on velocity 

 

  Figure 4: Variation of magnetic parameter on 

velocity 
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Figure 5: Variation of Prandtl number on 

temperature       

 

Figure 6: Variation of Prandtl number on 

nanoparticle 

  

Figure 7: Variation of Brownian motion on 

temperature 

 

Figure 8: Variation of Brownian motion on 

nanoparticle 

 

 

Figure 9: Thermopherosis parameter on 

temperature 

 

Figure 10: Thermopherosis parameter on 

nanoparticle 
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Figure 11: Modify Dufour parameter on 

temperature 

 

       Figure 12: Modify Dufour parameter on 

solutal   

 

Figure 13: Modify Dufour parameter on 

nanoparticle    

 

 

 

 

 

 

Figure 14: Lewis number on solutal 

concentration 

 

Figure 15: Nano Lewis number on nanoparticle   

 

 

Figure16: Dufour solutal Lewis number on 

solutal 
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Table 1: Comparison of values of 

( )/ / 0f  with existing solutions for 

0rC rTM G G= = =  

 

Table 2: Comparison of values for local 

Nusselt number ( )/ 0−  with existing 

solutions for 0b tN N Nd= = =  

 

 

5.0 Conclusion 

This work extends the work of [14] by 
introducing the buoyancy effects. The 
problem was presented in its rectangular 

form and later reduced to nonlinear 
coupled ordinary differential equations. 
The method of [15] was used to solve 
the problem, and results are validated 
with [14], [16], [5]. The main findings 
are: 

i. A good agreement was 
established between the 

present method and the 
comparison. 

ii. The physical parameters that 
occurred in the solutions, such 
as Grashof numbers, enhanced 
the velocity profile. 

iii. Prandtl number is found to 
lower the fluid temperature. 

Finally, this work can be extended further 
by incorporating additional parameters 

into the model. Another method, be it 
analytical or numerical, can also be 
employed to obtain the solution of the new 
extension.  
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