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Abstract: The model was governed by a system of ordinary differential 

equations; with the total population sub-divided into Susceptible 

individuals (S), Latently individuals (L), Infected undetected individuals 

(Iu) , Infected detected individuals (Id) and Recovered individuals (R). 

Theory of positivity and boundedness was used to investigate the well-

posedness of the model. Equilibrium solutions were investigated 
analytically. The basic reproduction number (R0) was calculated using the 

next generation method. Bifurcation analysis and global stability of the 

model were carried out using centre manifold theory and Lyapunov 

functions respectively. The effects of parameters such as Progression rate 

of infected individual to infectious individual (τ1), Effective contact rate 

(β), Modification parameter (θ), Slow progressor (ε), Endogenous 

reactivation rate (α), Detection rate of infected undetected individual (r), 

Recovery rate of infected detected individual due to treatment (τ2) and 

Recovery rate of infected undetected individual due to treatment (τ3) on R0 

were explored through sensitivity analysis. To reduce the burden of Ebola 

virus disease in the population the following parameters, τ1, β, θ, ε, α, r, τ2, 

and τ3 play a significant role in the spread of it in the population. Numerical 

simulation is analyzed by MAPLE 18 software using embedded Runge-

Kutta method of order (4) which shows the dynamical spread of Ebola virus 

disease. 
 

Keywords: Ebola virus disease; infected, reproduction number, critical 

points, bifurcation analysis and Lyapunov functions. 
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1.0 Introduction 

Ebola virus is most commonly spread 

via personal contact, and it has an 
incubation period of two to twenty–one 

days [9]. It takes approximately eight 

hours for the virus to replicate, and can 

occur several times before the onset of 
symptoms. "Hundreds to thousands of 

new virus particles are then released 

during periods of hours to a few days, 
before it finally kills the cell."[1].  Ebola 

virus disease (EVD) also known as 

Ebola haemorrhagic fever which was 
named after the river in Democratic 

Republic of Congo (DRC, formerly 

Zaire) where it was firstly discovered in 

1976, is a lethal virus for humans then 
[12] and a virulent filovirus that is 

known to affect humans and primates. 

The symptoms that occur within a few 
days after transmission include, high 

fever, headache, muscle aches, stomach 

pain, fatigue, diarrhea sore throat, 
hiccups, rash, red and itchy eyes, 

vomiting blood, bloody diarrhea [2]. The 

death rate of Ebola virus infection is 

somewhere between 50 % to 90 %, 
which means it is a deadly disease. Until 

now, there is no specific cure or vaccine 

for Ebola but, efforts are on-going to 
find a viable treatment [9].  

The first known outbreak of Ebola was 

in 1976, it occurs the same time in the 

Democratic Republic of the Congo 
(DRC) and Sudan, and it was recorded 

that each has a death rate beyond 50%, 

this disease then disappeared after 1979 
and did not re-appear again until 1994 

[3]. As of October 8, 2014, the World 

Health Organization (WHO) reported 
4656 cases of Ebola virus deaths, with 

most cases occurring in Liberia [10]. 

The extremely rapid increase of the 

disease and the high mortality rate make 
this virus a major problem for public 

health of the world [11]. The outbreaks 
have been occurring with increasing 

frequency, the most horrible outbreak of 

Ebola till date is currently occurring in 

West Africa, and it's been a long affair 
that has infected well over 24000 [9]. 

The present outbreak of Ebola Virus 

Disease in West Africa happens to be the 

most severe in recorded history [9]; 

hence, there is a need to explore the 
dynamics of this disease through 

mathematical modeling, in order to 

control further outbreak of the disease in 

World. A great many mathematicians 
have developed mathematical models to 

better improve our understanding of the 

dynamics and spread of Ebola Virus 
Disease in order to curb its prevalence 

and curtain the incessant outbreaks of 

the virus. In this study, a mathematical 
model was formulated and analyzed to 

see the effect of some parameter on the 

dynamical spread of Ebola virus 

diseases in the population. 

2.0 Mathematical Model 
The study used five (5) compartmental 

deterministic mathematical model of the 
S, L, Iu, Id, Rto have better 

understanding of the dynamical spread 

of Ebola virus diseases in the 
population. The population size N(t) is 

sub–divided into sub–classes of 

individuals who are Susceptible S(t), 

Latent L(t), Infected undetected Iu(t), 
Infected detected Id(t), and recovered 

R(t), 

Where

)1()()(

)()()()(

tRtI

tItLtStN

d

u



  

Susceptible (S): Susceptible individual 
is a member of a population who is at 

risk of becoming infected by a disease, 

Ebola virus diseases. The population of 
susceptible individuals increases by the 

recruitment of active individuals at the 
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rate π. The population decreased by 

natural death at a rate μ also, by force of 

infection of infected detected 

individuals λ.  

Latent (E): Latent individual is a 
member of a population who is infected 

individual but not infectious of the 

disease Ebola virus. The population of 

latent individuals increases through the 
product of slow progression and 

infection of susceptible and are assumed 

to show no disease symptoms at this 
time. The population of latent class 

diminished by the progression rate of 

infected individual to infectious class Id, 
disease induced death and natural death 
at a rate µ.  

Infected detected (Id): Infected 

detected individual is a member of a 
population who is infected and capable 

of transmitting the disease, Ebola virus 

in the population. The population of 
infected detected individuals increases 

through the infection of susceptible, 

detection rate of infected individual and 

the progression rate of infected 
individual to infectious class Id from 

latent. The population is decreased by 

recovery rate of infectious, natural 
death, disease induced death and 

endogenous reactivation with 

progression rate (τ2), (µ), (δ) and (ατ1) 

respectively. They are those under 
treatment or isolation center. 

Infected undetected (Iu): Infected 

undetected individual is a member of a 
population who is infected and capable 

of transmitting the disease, EVB. The 

population of infected undetected 
individuals increases through the 

endogenous reactivation with 

progression rate. The population is 

decreased by recovery rate of infected, 
natural death, disease induced death and 

detection rate (τ3), (µ), (δ) and (r) 

respectively. 
Recovered (R): Recovered individual is 

a member of a population who 

recovered from the disease. The 
population of recovered individual is 

increased by the treatment of infectious 

individual at a rate (τ2) and treatment of 

infected individual at a rate (τ3), this 
population later decreased by natural 

death at the rate (µ). 

Hence, we have the following nonlinear 
system of differential equations:

2.1 Model Equation 

  (2) 
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Figure 1. Flow Chat 

 
Table 1.  Description of Variables 

Variables Definitions 

S Susceptible individuals 

 Latently infected individual 

Iu Infected individual undetected 

Id Infected individual detected 

 Recovered individual 

 

Table 2.  Description of parameters 
Parameters Definitions 

τ1 
Progression rate of infected individual to infectious individual 

τ2 Recovery rate of infected detected individual due to treatment 

τ3 Recovery rate of infected undetected  individual due to treatment 

r Detection rate of infected undetected individual 

π Recruitment rate 

µ
 Natural death rate 

α Endogenous reactivation rate 

θ Modification parameter 

δ Induced mortality rate  

L

R
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β
 Effective contact rate 

N Total population 

λ Force of infection 

ε Slow progressor 

 

3.0 Basic Property 
3.1 Positivity and boundedness of 

solutions 

Since model (2) monitors human 

population, all the parameters are non-
negative. Therefore, it is needful to show 

that all the state variables are also non-

negative for all time t > 0. 

3.1.1 Theorem 1 
The state variables, S(t); L(t); IU(t); Id(t); 

and R(t), of the autonomous version of 

the Ebola Virus disease of model (2), 

with the non-negative initial data, 
remain non-negative for all t > 0.  

3.1.2 Proof 

Recalling the equation in system (2)   

 

where 

    (4) 

One can see from the first equation of (3) that 

   (5) 

So that, 

 (6) 

From which follows that 

 (7) 

It can be shown, using similar approach, 
that other state variables, L(t); Iu(t); Id(t); 

and R(t), are non-negative for all t > 0.  

Next, consider the biologically feasible 

region, define by  
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Where: 

     (8) 

It can be shown that  is positively invariant region. 

3.1.3 Theorem 2 
 The region Г is positively invariant with respect to the model (2) 

3.1.4 Proof 

 The rate of change of the total population is given by  

     (9) 

It results into the solution; 

    (10) 

 

  (3) 

 
 

It follows that as , in 

particular, , if   

with respect to the Ebola Virus model 
(3). Hence, it suffices to consider the 

dynamics of the model in . In this 

region, the Ebola Virus model can be 

considered as being mathematically 

well-posed [14]. 

4.0 Stability Property 

4.1 Disease Free Equilibrium (DFE) 

Disease free means when there is disease 
in the population, i.e, Iu = Id = 0. At 

equilibrium points, all the compartment 

are set to be zero; 

   (11)     

Let  denotes the disease free equilibrium. Thus; the model in (2) has disease free 

equilibrium given by 

               (12) 

4.2 Endemic Equilibrium  

The endemic equilibrium of the model (2) is given 

below; 
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                             (13) 

Where 

                     

 (14) 

4.3 Basic Reproduction Number ( ) 

Using next generation matrix [10, 13] 

the non-negative matrix F (new 

infection terms) and non-singular matrix 
V (other transferring terms) of the model 

are given, respectively by; 

  and   (15) 

After taking partial derivatives of  and V, we have: 

and    (16) 

Thus; 

          (17)   

The threshold quantity  is the basic 

reproduction number of the model 

system (2) for Ebola infection. It is the 

average number of new secondary 
infections generated by a single infected 

individual in his or her infectious period 

[13,21,23]. 

4.4 Local Stability 

4.4.1 Theorem 3: The disease free 

equilibrium of the model (2) is locally 
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asymptotically stable (LAS) if R0 < 1 

and unstable if R0> 1. 
4.4.2 Proof: 

To determine the local stability of E0, the 

following Jacobian matrix is computed 

corresponding to equilibrium point E0. 

Considering the stability of the disease 
free equilibrium at the critical point 

. 

  

A necessary and sufficient condition for 
local asymptotic stability is for the real 

part of the eigenvalue to be in the 

negative half plane [10]. Thus, it can 

show that J(E0) given by (18) has 
eigenvalues all have a negative real part. 

To this purpose, it is obvious from (18) 

that -µ(twice) are the two of the five 
eigenvalues of J(E0)  since the first and 

fifth columns contain only the 

diagonal terms. Hence, the other three 

eigenvalues can be obtained from the 

sub-matrix of 3 by 3 matrix, J*(E0) 

given by 

 (19) 

In what follows, the characteristic 

equation of   is of the form 

  is given by: 

 
         (18) 

 

 

(20) 
Simplifying matrix (20), can be 

written as: 

 (21)

And 

    (22) 

It is easy to see that  can be written in terms of  as: 
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Hurwitz criterion (see,[15]), all the 
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parts. Therefore, the disease free 
equilibrium, E0, is stable. Otherwise, 

whenever R0 >1 then B0<0. By 

Descartes’ rule of signs [16], there 

exists one eigenvalue with positive 
real part. Hence, E0 is unstable for R0 

>1. 
The implication of Theorem 3 is that the 

problem of  Ebola Virus diseases 

governed by model (2) will be wiped out 
from the population, if the initial size of 

the sick sub-populations are in the basin 

of attraction of the . 
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asymptotically stable (GAS) 

whenever R0 <1 and unstable if R0 >1. 
4.5.2 Proof 

Consider the linear Lyapunov function 

defined by 

      (24) 

where , and  

The time derivative of (24) along the solution path of the system (2) is given by 
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GAS in Г if R0 ≤0. 
The implication of Theorem 4 is that 

reduction or elimination of Ebola Virus 

disease is independent of the initial sizes 
of the sick people in the population. 

Hence, Ebola Virus disease can be 

eliminated if the associated reproduction 

number is less than unity. 
4.6 Bifurcation Analysis 

Bifurcation analysis is used to explore 

how the asymptotic stability of 
disease-free equilibrium is exchanged 

for asymptotic stability of endemic 

equilibrium of model (2) as the 

threshold quantity, Ro, cross the 
unity. In other words, to investigate 

the bifurcation at Ro = 1, using a 

center manifold theory of bifurcation 
analysis described by [18], used in 

some literatures like [19 – 23].  
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then,     (28) 

So that the disease-free equilibrium, E0 , 

is locally stable when β < β*, and is 

unstable when β > β*, this, β*, is 
bifurcation value.  

The linearized matrix of the system (2) 

around the disease-free equilibrium Eo 

and evaluated at
 
β* is given by; 

Then,  

 (29)

The eigenvalues  , of 

given by (29) are the roots of the 

characteristic equation of the form: 

 (30) 

Where is a polynomial of degree 

three whose roots are real and negative 
except one zero eigenvalue. 

4.6.1 Determination of right eigen-

vector and left eigen-vector 
The right eigenvector,

associated with this simple zero 

eigenvalue can be obtained from 

. Furthermore, the 

left eigenvector, 

, 

corresponding to the simple zero 

eigenvalue of (29) is obtained from 

 

4.6.2 Computation of bifurcation 
coefficient 

The direction of the bifurcation at  

Ro = 1 is determined by the signs of 
bifurcation coefficient “a” and “b”, 

obtained from the above partial 

derivatives, given, respecting, by 

 

                          

(31) 
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 (33)

By numerical evaluation, using value of 

parameter in Table 3, it was found that 

 and b > 0, which follows from 

the theorem of [18] that the model (2) 

exhibits a supercritical (forward) 

bifurcation and the endemic equilibrium 
E* is locally asymptotically stable.

Table 3.  Parameters Value and Source  

Parameters Value                             Baseline           Source          

τ1 0.9 – 0.4                             0.6                     [4] 

τ2 
0.9 – 0.4                            0.7                     [12] 

τ3 0.9 – 0.4                             0.7                     [12] 

r 0.2 – 0                                0.05                   [5] 

π 1 – 0.2                                0.9                     [4] 
µ

 
0.2 – 0                                0.1                     [2,5] 

α, 0.8 – 0.4                              0.5                    Assumed 

θ 0.9 – 0.2                             0.6                     [2] 

δ 0.2 – 0                                0.01                   Assumed 

β 0.9 – 0.2                              0.7                    [6] 

ε 0.4 – 0.1                             0.2                     [10] 

 

5.0 Sensitivity Analysis 
To determine how changes in 

parameters affect the transmission and 

spread of the disease, a sensitivity 
analysis of model (2) is carried out in the 

sense of [9, 22-23]. This was done to 

examine changing effects of the model 
parameters with respect to basic 

reproduction number, Ro, of the model 

(2). 

The normalized forward-sensitivity 

index of a variable, v, depends 
differentiable on a parameter, p, is   

defined as: 

  (34) 

In particular, sensitivity indices of the 

basic reproduction number, Ro, with 

respect to the model parameter. The 
following results were obtained using 

the parameter value in Table 3

: 

Table 4 Sensitivity indices with the Parameters 
Parameter Sign 

β
 

Positive  

θ Positive 

ε Negative 

α Positive 

τ1 Positive 

τ2 Negative 
τ3 Negative 

r Negative 
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The positive sign of S.I of Ro to the 
model parameters shows that an increase 

(or decrease) in the value of each of the 

parameter in this case will lead to an 

increases (or decrease) in Ro of the 
model (2) and asymptotically results 

into persistence (or elimination) of the 

disease in the community. On the 
contrary, the negative sign of Ro to the 

model parameters indicates that an 

increase (or decrease) in the value of 
each of the parameter in this case leads 

to a corresponding decrease (or 

increases) on Ro of the model (2). 

Hence, with sensitivity analysis, one can 
get insight on the appropriate 

intervention strategies to prevent and 

control the spread of the disease 
described by model (2)

. 

 

Table 5 Sensitivity value with the Parameters 

Parameter Sign 

β
 

+ 1 
θ + 0.7361563518 

α + 0.2159609121 
τ1 + 0.03905979791 

r - 0.04219721649 
τ2 - 0.02054932245 
τ3 - 0.02054932245 

ε -  0.01768264309 

 

The most sensitive parameter is β 

followed by θ and the least sensitive 

parameter is ε. 
All these eight parameters play an 

important role in the dynamical spread 

of the Ebola Virus disease in the 
population. The effect of some of 

them will be graphically illustrated 

below.  

6.0 Numerical Simulation 
Numerical simulation was carried out 

by MAPLE 18 software using Runge-

Kutta method of order four with the 

set of parameter values given in Table 

3. Dynamic spread of Ebola is 

checked simultaneously on 
Recovered, Susceptible, infected 

undetected, infected detected and 

Latent individuals since the spread of 
Ebola is a function of time. S(0) 

=300,Id(0)=0.02,Iu(0)=150 

,R(0)=100,L(0)=100 Figs 2-6 below 

are the results obtained from 
numerical simulation of the Ebola 

model with the dynamic spread
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.  

Figure 2(a) Graph of Progression rate of infected individual to infectious individual on 

susceptible class 

 
Figure 2(b) Graph of Progression rate of infected individual to infectious individual 

on latent class 
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Figure 2(c) Graph of Progression rate of infected individual to infectious individual on 

infected undetected class 

 
Figure 2(d) Graph of Progression rate of infected individual to infectious individual on 

infected detected class 
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Figure 3(a) Graph of Slow progressor on latent class 

 

 
Figure 3(b) Graph of Slow progressor on infected undetected class 

http://journals.covenantuniversity.edu.ng/index.php/cjpls


URL: http://journals.covenantuniversity.edu.ng/index.php/cjpl 

Akanni, John Olajide CJPL (2020) 8(2) 1-20 
 

16 
 

 
Figure 3(c) Graph of Slow progressor on infected detected class 

 

 
Figure 4(a) Graph of detection rate of infected undetected individual on infected 

undetected class 
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Figure 4(b) Graph of detection rate of infected undetected individual on infected 

detected class 

 

  
Figure 5(a) Graph of endogenous reactivation rate on susceptible class 
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Figure 5(b) Graph of endogenous reactivation rate on infected undetected class

 
Figure 5(c) Graph of endogenous reactivation rate on infected undetected class 

7. Results and Discussion 

In this study, five (5) deterministic 
epidemiological model of (S, L, Iu, Id, R) 

are presented to gain insight into the 

dynamical spread of Ebola virus disease. 

Positivity of solution shows that, the 

model presented is mathematically and 
epidemiologically well posed. Local and 

global stability of the model shows that, 

disease-free equilibrium is 
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asymptotically stable whenever the 

threshold quantity ‘R0’ is less than unity 
and otherwise endemic when it is greater 

than unity.  

The sensitivity analysis reveals that 

eight (8) parameters plays an important 
role in the dynamical spread of Ebola 

Virus disease according to the model 

(2), the parameters are τ1, β, θ, ε, α, r, τ2, 

and τ3. Four (4) were positive and four 

(4) were negative as it can be seen in 

Table 4 and Table 5, increasing those 
with positive index will result in the 

higher spread of the disease in the 

population, so effects must be made by 

the public and health workers to keep it 
loss while increasing those with 

negative index will result in the reducing 

the spread of the disease in the 
population. 

The model exhibits forward bifurcation 

which shows that the disease can be 

control if all effect is put in place by the 
public and health workers to force R0 

below unity. 

Figures. 2-5 of numerical simulation 
shows the behavior of some parameters 

on the dynamical spread of Ebola Virus 

diseases. 
Figure 2a-e, shows the behavior of 

progression rate of infected individual to 

infectious individual. 

(τ1): (a) reveals it effect on susceptible 
individuals (S), as τ1 increases S 

decreases with time, which means, it has 

a inverse effect on it. (b) shows the 
effect of τ1 on latently infected 

individuals (L), as τ1 increases L 

decreases with time, also, it has a inverse 
effect on it. (c) Pointed out the effect of 

τ1 on infected undetected individuals 

(Iu), as τ1 increases Iu increases with 

time, on this, it has a direct effect on it. 
(d) depicted the effect of τ1on infected 

detected individuals (Id), as τ1 increases 

Id increases with time, also on this, it has 

a direct effect on it. 
Figure 3a-c, reveals the effects of slow 

progressor (ε): (a) depicted the effect of 

ε on latently infected individuals (L), as 
ε increases L decreases with time, this 
reduces the burden of (L). (b) shows the 

effect of ε on infected undetected 

individuals (Iu), as ε increases Iu 
increases with time, this increases the 

burden of (Iu).  (c) pointed out the effect 

of ε on infected detected individuals (Id), 
as ε increases Id increases with time this 

increases the burden of (Id). 

Figure 4a-b, pointed out the effects of 

detection rate of infected undetected 
individual (r):  (a) the effect of r on 

infected undetected individuals (Iu), as r 

increases Iu decreases with time, this 
decreases the burden of (Iu). (b) the 

effect of r on infected detected 

individuals (Id), as r increases Id 

increases with time, this increases the 
burden of (Iu). 

Figure 5a-c, shows the effects of 

endogenous reactivation rate on the 
population (α): (a) reveals it effect on 

susceptible individuals (S), as α 

increases S decreases with time, on this, 
it has an inverse effect on it. (b) shows 

the effect of α on latently infected 

individuals (L), as α increases L 

decreases with time, also on this, it has 
an inverse effect on it. (c) pointed out the 

effect of α on infected undetected 

individuals (Iu), as α decreases Iu 
increases with time, also on this, it has 

an inverse effect on it. 

8.0 CONCLUSION 
In conclusion, reduction or elimination 

of Ebola Virus diseases governed by 

model (2) can be eliminated from the 

population whenever an influx by 
infected individual is small such that R0 

< 1 also reduction or elimination of 
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Ebola Virus disease is independent of 

the initial sizes of the sick people in the 
population. Hence, Ebola Virus disease 

can be eliminated if the associated 

reproduction number is less than unity. 

The bifurcation analysis was a forward 
which shows that the disease can be 

control if all effect is put in place to 

force R0 to be less than one. The 
sensitivity analysis reveals that four (4) 

were positive, which are τ1, β, θ and α; 

increasing these one will result in the 
more spread of the disease in the 

population, all hand must be on deck to 

keep it loss. Four (4) were negative are 

ε, r, τ2, and τ3; increasing those with 
negative index will result in the reducing 

the spread of the disease in the 

population, so effects must be made to 
raise it up. 
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