
 

 
 

 
 

 

 

 Covenant  Journal of Physical & Life Sciences (CJPL) Vol. 7 No. 1, June 2019         
    ISSN: p. 2354 – 3574   e. 2354 – 3485   DOI: 10.20370/pqax-zs76                                                           

An Open Access Journal Available Online 

 

 

 

 

Sensitivity Analysis of the Gonorrhea Disease 

Transmission and its Equilibria 
 
   

 

 

Akanni John Olajide1*, Adediipo Adeola David2  

& Akinpelu Foluke O2 

 
 

 

1Department of Physical Science, Precious Cornerstone University, Ibadan, Oyo 

State. 
2Department of Pure and Applied Mathematics, Ladoke Akintola University of 

Technology, Ogbomoso, Oyo State, Nigeria 

 jide28@gmail.com 

 

Received: 19.06.2018   Accepted: 17.05.2019   Date of Publication: June, 2019 

 

Abstract: In this paper we formulate an SEIR (Susceptible – Exposed - Infective - 

Recovered) model of Gonorrhea disease transmission with constant recruitment. The 

threshold parameter R0< 0, known as the Basic Reproduction Number was found. 

This model has two equilibria, disease-free equilibrium and endemic equilibrium. 

By constructing suitable Lyapunov function, it was discovered that the disease-free 

equilibrium is globally asymptotic stable whenever R0 is less than one and when it is 

greater than one, the endemic equilibrium is globally asymptotic stable. Increasing 

the value of any of the parameters,  or, , increases the basic reproduction 

number, Ro, and the magnitude of the infectious individual in the community  

increases accordingly. Conversely, increasing the value of 

either  ord,,, , decreases the basic reproduction number, Ro, and the 

magnitude of the infectious individuals in the community decreases accordingly. 

Therefore, it is pertinent to conclude that efforts at reducing the basic reproduction 

number of a disease should be encouraged in order to achieve a disease-free 

population. 
 

Keywords: Stability Analysis, Basic Reproduction Number, Lyapunov function, 

Sensitivity Analysis 
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Introduction.  

The formulation of the first gonorrhea 

model by [1] instigated the use of 

differential equation models to study the 

transmission dynamics and control of 

sexually transmitted diseases (STDs). 

However, the use of differential 

equations for models for STDs goes 

back to [2], who in 1911, introduced the 

first differential equation model for the 

transmission dynamics of vector 

transmitted diseases. The modeling 

work of [2] was motivated by his 

attempts to develop management 

strategies for the control of malaria, a 

disease that is transmitted as part of the 

life cycle of the Plasmodium parasite. 

The life cycle of this parasite requires, 

at different stages, human and vector 

hosts for its completion. Humans can 

only become infected by being bitten by 

infected vectors (female mosquitoes) 

and vectors can only become infected 

by biting infected humans. Ross's 

contributions to the understanding of the 

malaria life cycle were rewarded with a 

Nobel Prize in medicine. 

The author of [2] made a series of 

observations that became important 

components in the modeling of vector- 

and sexually transmitted diseases, 

including the fact that the average total 

rate of contacts between host and 

vectors must be conserved. This simple 

conservation law has become the basis 

for modeling heterogeneous contact 

structures [3, 4].  

The contributions were extensive and 

deserve to be credited in this setting, as 

he explicitly recognized that STDs 

could be modeled in the same way as 

vector-transmitted diseases [2]. 

Furthermore, he was aware of the role 

of frequency-dependent dynamics and, 

consequently, he did not restrict his 

work to situations where the interacting 

subpopulations did not change [2]; see 

also [5]. The assumption that the sizes 

of interacting populations were constant 

and not dynamic variables became an 

important but limiting component in the 

modeling of sexually transmitted 

diseases [6, 7].  

Garnett et al. [8], examined the sexual 

behavior of gonorrhea patients in New 

York, and used it to estimate the 

parameters of their gonorrhea model. 

Their model was used to assess the 

potential impacts of treatment 

intervention. Kretzschmar et al [9], 

proposed a stochastic model for 

gonorrhea which analyze the underlying 

structure of sexual contact pattern. They 

compared the benefits of condom use in 

an age-structured population of sexually 

active core group. Prabhakararao [10], 

analyzed a mathematical model of 

Gonorrhea disease. They ascertained 

that the spread of the disease involves 

interaction of the susceptible and the 

infective. Leung and Gopalsamy [11], 

formulated a continuous time SIV 

model for Gonorrhea transmission 

among homosexuals. They also used a 

non-standard discretization method to 

formulate a discrete time model, and 

they compared the results of their 

models. Yorke [12], modelled the 

spread of Gonorrhea in a population that 

was categorized into n group and used it 

to further study the asymptotic stability 

of the model. Kishore and 

Pattabhiramacharyulu [13], proposed a 

simple non-linear first order ODE 

model for Gonorrhea that measure the 

growth rates of promiscuous and 
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infective in a homosexual population. 

They further used numerical examples 

to explain the effect of cure rate and 

infective rate on the spread and control 

of the disease. 

Besides the mathematical models, an 

equally outstanding contribution has 

been achieved by the non-mathematical 

models. Karnath [14], discusses the 

symptoms and signs of Neisseria 

Gonorrhea with regards to the 

genitourinary and extra-genital, and 

outlines laboratory diagnosis with 

recommended treatment measures. 

Benedek [15], discusses the 

unsuccessfulness of various experiments 

in an attempt to infect animals with 

Gonorrhea infection as well as history 

of researches on causes and spread of 

Gonorrhea in humans over the decades. 

Bala [16], compared and compiled the 

resistance trends of Neisseria Gonorrhea 

across various countries of south-East 

Asia Region by means of surveillance. 

Model Formation 

The model is an heterosexually active 

population. The disease that guides the 

modeling is gonorrhea and, 

consequently, infective recover after 

treatment. It was assumed that the 

population is genetically and 

behaviorally homogeneous except for 

the gender of individuals in the 

population. The model used is a 

susceptible-Exposed-infective-

recovered model, that is, a 

homogeneously mixing SEIR model. 

The assumption here is that once 

susceptible class increases constantly by 

constant recruitment π and individuals 

treated that are re-infected at a rate 𝜻, it 

decreases at the rate of contact of 

infection β and natural death µ. The 

exposed increases as the infection β 

invade the susceptible and decrease as 

the disease progresses ρ to real infection 

with full symptom and natural death µ. 

Infected class increases as they progress 

ρ from expose and decrease at the rate 

of treatment 𝛼, natural µ and diseases 

induced death d, while the recovered 

class increases as the move from 

infected with the rate of treatment 𝛼 and 

decrease as the rate of re-infection 𝜻 and 

natural death µ. Where the N(t) means 

the total population. 

 

Model Equation 

We have the following non-linear system of differential equations, 

         tRζtSμtItSβθκ1π
td

Sd
  
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         

     

     tRtI
td

d

tIdtE
td

d

)1(tEtItSβθκ1
td

Ed













R

I

 
 

Flow Chart 
 

                µ                   µ                              µ                                     µ        𝛼 

π                           (1 – k θ) β I                               ρ                                         

 

                                                                                                                      d 

𝜻 
 

 

 

2.2 Table 1 Descriptions of Parameters and ValuesTable 2 Description of Variables 
 

Parameters    Definitions           Value [17] 

     π         Recruitment Rate               2000 

     ƙ         Efficacy of Condom           0.7 

     θ        Compliance of Condom       0.5 

     β         Effective Contact Rate        0.1 

     µ         Natural Death Rate             0.01 

      ζ        Loss of Immunity                0.03 

     ρ        Progression Rate                  0.6 

     d        Induced Death Rate             0.01 

𝛼         Treatment Rate                       0.6 

     N        Total Population               Varried 

 

Model Analysis 
 

Positively Invariant Region 
 

Theorem 1 

The closed set  












NRRIESD :

4
  

is positively-invariant and attracting 

with respect to the model in (1).  

Let the initial data for the model (1) be 

S(0) >0, E(0) >0, I(0) >0 and R (0) >0 . 

Then the solutions (S(t), E(t), I(t), R(t)) 

Variables                  Definitions 

     S                  Susceptible Individual 

     E                  Exposed Individual 

     I                   Infected Individual  

     R                 Recovered Individual  

R 

(t) E 

(t) 

I (t) S 

(t) 
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of the model (2.1), with positive initial 

data, will remain positive for all time t 

>0. 
 

Proof: Consider the biologically-

feasible region D, defined above. The 

rate of change of the total population, 

obtained by adding all equations of the 

model in (1), is given by 

 
 

δNμπ
td

Nd
  (2) 

It follows that 0
td

Nd
 whenever



π
N  , furthermore, 

Since Nμπ
td

Nd
  

it is clear that 


π
)(N t  

if 


π
)0(N   

Therefore, all solutions of the model 

with initial conditions in Dremain in 

Dfor all t -limits sets of 

the system in (1) are contained in D). 

Thus, D is positively-invariant and 

attracting. In this region, the model can 

beconsidered as been epidemiologically 

and mathematically well posed 
 

Existence and Uniqueness of the solution 
 

Theorem 2: The closed set  

 dRRcIIbEEaSSRIESD  )0(,)0(,)0(,)0(:   
 

then model in (1) has a unique solution 

in D, Let the initial data for the  model 

(1) be S(0) >0, E(0) >0, I(0) >0 and 

R(0) > 0. Then the solutions (S(t), E(t), 

I(t), R(t)) of the model (1), with positive 

initial data, will positive for time t > 0. 
 

Proof: Consider the biologically-

feasible region D , defined above. The 

model in (1) must be continuous and 

bounded in D. 
 

Therefore, 6,5,4,3,2,1,, ji
dx

dx

j

i  

are continuous and bounded. All 

solution of the model (2) with initial 

conditions in D .Hence the model (1) 

has a unique solution in D, which means 

that the model (1) is epidemiologically 

and mathematically well posed. 
 

Existence of Disease Free Equilibrium 

(DFE) 

For critical points, we set; 
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0
dt

dR

dt

dI

dt

dE

dt

dS

           (3)      

 

At disease free equilibrium, we assumed 

there is no infection in the population. 

Let 
0
  denotes the disease free 

equilibrium. Thus; 

The model in (1) has disease free 

equilibrium given by 
 









 0,0,0,),,,(

0 


 RIES

 (4)       

Existence of Endemic Equilibrium 

Point (EEP) 

When there is disease in the population, 

it is called EEP; it implies that 

0
dt

dR

dt

dI

dt

dE

dt

dS

                      

(5)

 

And now solve model (1) 

simultaneously to get the endemic 

equilibrium point, it given below; 

 




















B

A
R

B

AKK
E

B

AK
I

KK
S









**32**

3**

1

21**

(6) 

Where 

    1
32121

1

321









KKKBKKA

KdKK

 

 

 

Basic Reproduction Number ( 0R ) 

Using next generation matrix [14], the 

non-negative matrix F (new infection 

terms) and non-singular matrix V (other 

transferring terms) of the model are 

given respectively by; 

 
 

   
 
  








































RE

IdE

E

Vand

IS

F







,

0

0

1

     (7)
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After taking partial derivatives of F and V, we have: 

F= 

 





















 

000

000

0
1

0




at DFE

           (8) 

 

V=


























0

0

00

d        (9) 

 

Thus; 

 
  








d
R

1

0
(10) 

The threshold quantity 0R  is the basic 

reproduction number of the system (1) 

for Gonorrhea infection. It is the 

average number of new secondary 

infections generated by a single infected 

individual in his or her infectious 

period. [10]. 
 

Local Stability of the DFE 
 

Theorem 3: The disease-

freeequilibrium of the model (1) is 

locally asymptotically stable (LAS) if 

0R < 1 and unstable if 0R > 1. 

Proof: To determine the local stability 

of 0E , the following Jacobian matrix is 

computed corresponding to equilibrium 

point 0E . Considering the local stability 

of the disease-free equilibrium 

at 







0,0,0,




. We have  

 

 
 

 
 

 
 

)11(

00

00

0
1

0

1
0



















































d

G
J  

 

The characteristics polynomial of the 

above matrix is given by 0
01

2

2

3

3

4

4
 BBBBB 

                        (12) 
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And 

 
  







 dB

1

0

 

Thus by Routh – Hurwitz criteria, Eo is 

locally asymptoticly stable as it can be 

seen for 

 

00,0,0,0,0 4

2

1

2

33213314321  BBBBBBandBBBBBBB     
(13)

 

 

Thus, using 00 B  

 
  

)14(1
1

0











d
B  

Hence  

10 R  

The result from Routh Hurwitz criterion shows that, alleigen-values of the polynomial 

are negative which shows that the disease free equilibrium is locally asymptotically 

stable. 

Global Stability of the Disease free equilibrium 
 

Theorem 4 

The DFE,
0
 , of the model (1), is  globally asymptotically stable in D if 1

0
R .  

 

Proof 

Consider the Lyapunov function 

IAEAV
21

                       (15) 

Where,  

1
1
A   and   

 


 


2
A  

The associated Lyapunov derivative is given by (where a dot represents differentiation 

with respect to time t) 
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          
 

      

             
 

   

 
 

  
 

  
    )17(tI1

d

tI
d

tI
βθκ1

tIdtEtEtItSβθκ1

tIdtEtEtItSβθκ1

)16(
*

2

*

1

*
























oR

IAEAV

























 

Thus, 0

*

V if 1oR  with 0

*

V if 

and only if .0 RIE  Further, the 

largest compact invariant set in 

 








 0

*

:,,, VDRIES  is the 

singleton  .o  It follow, from the 

LaSalle’s Principle [14], that every 

solution to the equation in (1) with 

initial conditions in D converge to 
o
  

as .t  That is, 

        0,0,0,, tRtItE   as 

.t  Substituting 0 RIE  

into the first equation of (1) 

gives  



tS  as .t  

Thus,          







 0,0,0,,,,




tRtItEtS    as .t  

for 1
0
R , so that the DFE, is globally 

asymptotically stable in D if 1
0
R . 

Global Stability of the Endemic 

Equilibrium Point 
 

Theorem 5 

Consider the model (1) with   defined 

by (1). The associated unique endemic 

equilibrium of the model is globally 

asymptotically stable in D*\D0 if 

1
0


m

R and
**

SS  . 

Proof 

Consider the model (1) with   and 

1
0


m

R , so that the associated unique 

endemic equilibrium of the model 

exists. Further, consider the following 

non-linear Lyapunov function (of Goh-

Volterra type). 

 

)18(
**

ln****
**

**
ln****

**
ln****











































































I

I
III

d

S

E

E
EEE

S

S
SSSF




 

with Lyapunov derivative, 

)19(
.**.**.**..**..































 I

I

I
I

d

S
E

E

E
ES

S

S
SF




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So that, 

                    

                    

             )20(tIdtE
**

tIdtE
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Simplifying the above equation, it result into  

   

             )22(tIdtE
**

tIdtE
**

**E
**

SI-E
**

Rζ**Sμ

**ISβ
**

**Rζ

2**2**
**IβRζSμ**Rζ**Sμ**I**Sβ

.














































I

I

d

S

E

E

S

S

S

S

S

S

S

S
F

 

****
**

2**
**

S
****

**

SI-

**

Rζ
**

Sμ

**
**

Rζ

2**2**
**

IβRζSμ
**

Rζ
**

Sμ
**

I
**

Sβ

.

IS
IE

IE
IS

E

E

S

S

S

S

S

S

S

S
F









 

    61 

 

http://journals.covenantuniversity.edu.ng/index.php/cjpls


   Akanni John Olajide, et al                                                                                                       CJPL (2019) 7(1) 52-66 
 

 

URL: http://journals.covenantuniversity.edu.ng/index.php/cjpls 

 















































**
1

**

****
**

Rζ

**

**

2
**

Sμ
****

**

**

**

3
**

I
**

Sβ

.

R

R

SR

SR

S

S

S

S

S

S

ESI

ESI

IE

E

S

S
F

 
Finally, since the arithmetic means exceeds the geometric mean, the following 

inequalities hold: 
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Thus, 0

.

F  for 1
m
oR . Hence, F  is 

a Lyapunov function on D*. It follows, 

by LaSelle’s Invariance Principle [14], 

that every solution to the equations of 

the model (1) with the force of infection 

and the initial condition in D*\D0, 

approaches the associated unique 

endemic equilibrium of the model as 

t  for 1
m
oR .  

 

Sensitivity Analysis 

This section examines changing effects 

of the model parameters with respect to 

basic reproduction number, Ro, of the 

model (1). To determine how changes in 

parameters affect the transmission and  

 

 
 

spread of the disease with recovered, a 

sensitivity analysis of model (1) is 

carried out in the sense of [10],[17]. 
 

Definition 1. The normalized forward-

sensitivity index of a variable, v, 

depends differentiable on a parameter, 

p, is   defined as: 

)24(
v

p

p

vv
p 






 
In particular, sensitivity indices of the 

basic reproduction number, Ro, with 

respect to the model parameter. For 

example, using the above equation, we 

obtain: 
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The positive sign of S.I of Ro to the 

model parameters shows that an 

increase (or decrease) in the value of 

each of the parameter in this case will 

lead to an increases (or decrease) in Ro 

of the model (1) and asymptotically 

results into persistence (or elimination) 

of the disease in the community . For 

instance 1
oR


 means that increasing 

(or decreasing) by  10% increases (or 

decreases) Roby 10%. On the contrary, 

the negative sign of Ro to the model 

parameters indicates that an increase (or 

decrease) in the value of each of the 

parameter in this case leads to a 

corresponding decrease (or increases) 

on Ro of the model (1). Hence, with 

sensitivity analysis, one can get insight 

on the appropriate intervention 

strategies to prevent and control the 

spread of the disease described by 

model (1). 
 

Conclusion 

This work presents both theoretical and 

quantitative analyses of a deterministic 

epidemiological model of a Gonorrhea 

disease infection. The results obtained 

are highlighted as follows:   

The model is epidemiologically well 

posed. The solution exists and is unique. 

The disease-free equilibrium is locally 

asymptotically stable when the 

threshold quantity, Ro, is less than one. 

The model has a globally asymptotically 

stable disease – free equilibrium when 

the threshold parameter Ro< 1 was done 

using Lyapounov function different 

from the method used by [17]. 

The endemic equilibrium of the 

formulated model is globally 

asymptotically stable whenever the 

threshold quantity, Ro, is greater than 

one, it was carried out using Lyapounov 

function different from the method used 

by [17]. 

Increasing the value of any of the 

parameters,  or, , increases the 

basic reproduction number, Ro, and the 

magnitude of the infectious individual 

in the community increases accordingly. 

Conversely, increasing the value of 

either  ord,,, , decreases the 

basic reproduction number, Ro, and the 

magnitude of the infectious individuals 

in the community decreases 

accordingly. 

Therefore, it is pertinent to conclude 

that efforts at reducing the basic 

reproduction number of adisease should 

be encouraged in order to achieve a 

disease-free population. 
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