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Abstract: This paper focused on the higher-Order Markov Model whose 

number of states and parameters are linear with respect to the order of the 

model and as well as classifying it. Model for Efficient estimation methods of 

the parameters was developed and the model was applied to solve the 

application of DOTS in the treatment of tuberculosis health problem. 

Numerical examples with applications are given to illustrate the power of our 

proposed model. It was discovered that the second order Markov model was 

best fit base on the values of the AIC and BIC result obtained.   
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1.0 Introduction  
Research has shown that Tuberculosis 

(TB) remains a major global health 

problem. It causes ill health among 

millions of people and it is ranked as 

the second leading cause of death from 

an infectious disease worldwide after 

human immunodeficiency virus (HIV) 

[1]. Tuberculosis (TB) is an infectious 

disease caused by Mycobacterium 

tuberculosis and can affect different 

body organs [2, 3]. TB can result from 

a rapidly progressive disease following 

recent infection with Mycobacterium 

tuberculosis or from reactivation of a 

past latent TB infection.  TB is largely 

transmitted by aerosols produced from 

coughing in individuals with active 

pulmonary disease. TB surveillance 

and preventing further spread of the 

disease requires full understanding of 

the biological factors affecting TB, and 

also finding mathematical patterns 

explaining the mechanism of TB 

transmission through the community 

[4].  The objectives of this study is to 

apply the use of Directly Observed 

Treatment short- course (DOTS) to 

monitor and control the epidemic, the 

probability of being in a given state at 

a given point in time, the expected 

number of transitions between states 
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and finally find the best model for 

DOTS applications. This strategy was 

expected to bring about a major 

change in controlling the disease. 

Directly Observed Treatment short-

course (DOTS) has been found to be 

an effective means of administering 

anti-TB drugs, significantly reducing 

the rates of relapse and drug resistance 

as well as improving the treatment 

compliance rate  [5, 6].   
 

Many statistical models have been 

explored to control the TB epidemic. 

Markov processes are not suitable for 

modeling all disease types and 

answering all disease related 

questions due to the complexity that 

is involved in the modeling of some 

diseases [7]. Evaluation of treatment 

outcome is central to the assessment 

of effectiveness of tuberculosis [8]. 

Treatment outcomes for TB patients 

(excluding patients treated for RR-TB 

or MDR-TB, that is multi-drug 

resistance to tuberculosis drugs) are 

classified as successful (cure or 

treatment completed) or poor (default, 

treatment failure or death) as defined 

by the [9]. 
 

Statistical methods like regression 

techniques, time series analysis, 

statistical process control and Bayesian 

methods have been used to monitor the 

epidemiologic surveillance of 

infectious diseases [10]. [11] 

introduces a warning threshold for 

detecting the unexpected incidences of 

Tuberculosis (TB) using a Hidden 

Markov Model (HMM) and it was 

concluded that the warning threshold 

constructed based on the Periodic 

Autoregressive Model can be regarded 

as a useful alternative for HMM in 

detection of the weeks with 

unexpected incidence of TB, therefore 

it was suggested for monitoring TB 

surveillance. Treatment outcomes of 

patients are classified as successful 

(cure or treatment completed) or poor 

(default, treatment failure or death) as 

defined by [12]. Markov chain 

concerns about a sequence of random 

variables, which correspond to the 

states of a certain system, in such a 

way that the state at one time epoch 

depends only on the one in the 

previous time epoch. Higher order 

markov model is used to model 

treatment outcome of tuberculosis as 

DOTS application. 
 

Higher Order Markov Model 

(HOMM) has been used in analysis 

and prediction of time series 

demonstrating the effectiveness of 

Markov chain model and it has been 

applied to price and sales volume for 

beef prediction problem by Tie Liu. 

Markov chains have been used to 

model categorical data sequences and 

this can be found in [13] and [14]. 

Markov chain model of order higher 

than one that involves only one 

parameter for each extra log variable 

was suggested by [15]. This was 

extended to qth order marginalized 

transition model (MTM) by [16] and 

[17]. 

 [18] generalized the [15] model by 

allowing Q = {qij} to vary with 

different lag and then developed 

effective method for parameter 

estimation. Higher-order Markov 

Model, each data point X(n)  in a 

categorical data sequence takes value 

in the set M ≡ {1, 2 ,….., m} and m is 

finite i.e. a sequence has m possible 

categories or states. The total number 

of independent parameter to be 

estimated in kth order Markov chain is 

m
k 

(m-1).The number of independent 

parameters increases geometrically as 

the order increases, thereby 
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discourages people from using higher 

order Markov chain. See Table 1 

Raftery proposed a higher order 

Markov chain model which involves 

one additional parameter for each lag. 

The model can be written as  

 

                                        

Where,   

 

And  is transition matrix with column sum equals one, such that  

 
A more general higher-order Markov 

chain model is obtained by allowing Q 

to vary with different lags. Here we 

assume that the weight λi is non-

negative. It should be noted that it can 

be written as 

 
Where  is the probability 

distribution of the states at 

time . Using (1.4) and 

Q is a transition probability matrix, we 

consider each entry of 

which is between 0 and 1 

and also parameter is non-negative. 

The additional constraint should be 

added to guarantee that  is 

the probability distribution of the 

states. 

Raftery’s model can be generalized as 

follows: 

 
The total number of independent 

parameters in the new model is 
 . We note that if 

 then the 

above equation is just the Raftery’s 

model. 

In the model we assume that  

depends on   

via the matrix  and weight   . One 

may relate  to the i-step transition 

matrix of the process and this can be 

used to estimate . It is assumed that 

each  is a non-negative stochastic 

matrix with column sums equal to one. 
 

2.1 Estimation of the model Parameters 

Given an observed data sequence , 

where  can be written in a 

vector form as: 

 
Where T is the length of the sequence 

and .  is 

categorical data if it finite and 

unordered. 

One can find the transition frequency 

 in the sequence by counting the 

number of transitions from state i to 

state j in one step. Also one can 

construct the one step transition 

matrix or the sequence as follows:   

     F =                                                                                                        

2.1 

From F, one can get the estimates for 

 as follows:  

P =                                                                                                                                                   

2.2 

Where, 
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And the estimators in p(x) satisfies 

 
The following proposition by [19], 

helps in estimating the parameters in 

HOMM.  

Proposition 1. The matrix P has an 

eigenvalue equal to one and all the 

eigenvalues must have modulus less 

than or equal to one. 

Proposition 2. (Perron-Frobenius 

theorem). Let A be a non-negative and 

irreducible square matrix of order m. 

Then  

1. A has positive real eigenvalue, λ, 

equal to its spectral radius i.e. 

 , where  

denotes  eigenvalue of A 

2. To λ there corresponds an 

eigenvector x  its entries being real 

and positive, such that  

      
3.  λ is a simple eigenvalue of A 

using these two propositions, one can 

see that there exists a positive vector  

 
such that  if P is irreducible. 

The vector x in normalized form is 

called the stationary probability of 

vector P. Therefore,  is the 

probability that the system is in state i. 

As a result of the proposition (1) and 

(2) above   and 

, then the  proposition 

(1) gives a sufficient condition for 

sequence   to converge to 

stationary distribution X. As  

 as n goes to infinity, then  

can be estimated from sequence  . 

Therefore, the proportionality of 

occurrence of each state can then be 

denoted by  i.e.  

 
And this is one of ways to estimate 

parameter λ.  

 . 

One of the ways to estimate the 

parameter  is to consider the 

minimization problem through certain 

vector norm, , using 1 which 

leads linear programming equation, 

2 which leads to quadratic 

programming problem and ∞ 

which avoids gross discrepancies with 

data as much as possible. 
 

Definition of Matrix-Norm 

From Wolfram Mathworld,  

Let A be a square or real matrix, a 

matrix norm  is a non-negative 

number associated with A with the 

following properties: 

1. 

 

2. 

 

3.  

4.  

Let  be the eigenvalues 

of A, then 

 
The matrix p-norm is defined for a real 

number  and a matrix A 

by  

 
where  is a vector norm. It is 

tasking to compute p-norm for p  

because it is a non-linear optimization 

problem with constraints so 

mathematical software are used. 
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The maximum absolute column sum 

norm  is defined as 

 
The spectral-norm, , which is the 

square root of the maximum 

eigenvalue of , where  is the 

conjugate transpose of A. therefore 

 and this is always referred to as matrix 

norm. 

The maximum absolute row sum 

norm is defined by 

 
Satisfies the 

inequality   [20] 
 

Let us consider 1 which leads to 

solve linear programming problem 

 
s.t = 

 

And considering ∞ norm, will lead 

to  

i 

s.t = 

 

where  denotes the ith entry of the 

vector and the optimization problem 

leads existence of 

stationary distribution X, while 

minimization problem can be 

formulated as a linear programming 

problem as follows: 

 subject to   

 
 

 

 
 

Materials and Methods  

The data was collected from a survey 

on “Appraisal of Directly Observed 

Treatment short- course (DOTS) and 

Tuberculosis Eradication in Secondary 

Healthcare facility in Southwest, 

Nigeria” at West African Post 

Graduate College of Pharmacist, Yaba, 

Lagos. The questionnaire contains 42 

items which was divided into 4 

subsections (A – D). Section A (made 

up of 9 items) consisted of questions 

on socio-demographic characteristics 

of individuals – age (years), sex, 

marital status, religion, education. 

Section B was on the knowledge of 

DOTS. Sections C was on application 

of DOTS while Section D was on 

impact of DOTS. This study focuses 

on the application of DOTS with state 

of the patients (success, failure). The 

individuals attending the Out-patients 

Department of the hospital for 

tuberculosis treatment were used for 

the study. Convenient sampling 

technique was used. Data was 

collected three times a week for the 

period of one and a halved month. R 

programming language was used to 

analyze the data using Higher Order 

Markov Model.  
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Results  

This chapter presents the analysis and 

interpretation of the data on “Appraisal 

of Directly Observed Treatment short 

course (DOTS) strategy and 

Tuberculosis Eradication in a 

Secondary Healthcare Facility in 

Southwest, Nigeria” used in the study. 

The result of the analysis is presented 

using tabular presentations. Data were 

collected on 250 patients suffering 

from Tuberculosis. There are two 

possible states in the Markov chain, 

which are 1 and 2. States 1 and 2 

represent success and failure 

respectively. Lambda: [1] = 1. The 

lambda is one showing adequacy of 

order 1. The steady state vector v 

satisfies the equation vP = v. That is, it 

is an eigenvector for the eigenvalue λ 

= 1. If the probability in P remain the 

same over a long run, it will get to a 

stage where the vector will be stable 

i.e. no change occur and it will be in 

equilibrium stage. At this stage, the 

system is said to be in steady state and 

the steady state vector is called 

stationary vector.  

 vP = v 
 

The steady state probability is of the 

form: 

  

 

 

Table 1: The probability transition 

matrix of the different states summing 

up to one for success and failure for 

order 1. The probability of moving 

from success to success is 0.56, the 

probability of moving from success to 

failure is 0.09, and the probability of 

moving from failure to success is 0.44 

while the probability of moving from 

failure to failure is 0.91. Lambda: [1] = 

1. The lambda is one showing 

adequacy of order 1. The Table 3 

shows that the mean transition from 

state one to one is 34.6,.the mean 

transition from state one to two is 5.80, 

the mean transition from state two to 

one is 26.70, while the mean transition 

from state two to two is 56.5. The 

higher expectation from state one 

(success) to state two (failure) is due to 

relapsed in the application of DOTS 

process during application of treatment 

i.e. the conditional expectation of 

success given failure. 
 

The Table 4 is the probability 

transition matrix of the different states 

summing up to one for success and 

failure for order 2. The probability of 

moving from success to success is 

0.47, the probability of moving from 

success to failure is 0.11, and the 

probability of moving from failure to 

success is 0.53 while the probability of 

moving from failure to failure is 0.89. 

[1] 0.5 0.5 .The lambda is one showing 

adequacy of order 2. 
 

Table 5 is the mean transition from 

state one to one is 28.8, the mean 

transition from state one to two is 7.0, 

the mean transition from state two to 

one is 32.9, while the mean transition 

from state two to two is 54.8. The 

higher expectation from state one 

(success) to state two (failure) is due to 

relapsed in the application of DOTS 

process during application of treatment 

i.e. the conditional expectation of 

success given failure. 

Calculating the AIC and BIC with 

the following log likelihood:  

LL
(1)

 = -95.66233 

LL
(2)

 = -62.3243 

LL
(3)

 = -45.4162 

The Table 6 & 7 shows AIC and 

BICwhich indicates that the best 

model that appears to give an excellent 

fit is the second order Markov model 

since it has a lower AIC and BIC when 

             1          2 

0.1732523 0.8267477 
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compared with the first order. This is 

because the third order was invalid due 

to the inability of the lambda value to 

sum up to one. Hence, the best model 

is the second order Markov model with 

AIC (132.649) and BIC (134.219).  

The model has parameters λ1 = 0.5 for 

the first lag, λ2 = 0.5 for the second 

lag. 
 

Discussion  

This study focuses on the application 

of DOTS with state of the patients 

(success, failure). Directly Observed 

Treatment short-course (DOTS) has 

been found to be an effective means of 

administering anti-TB drugs, 

significantly reducing the rates of 

relapse and drug resistance as well as 

improving the treatment compliance 

rate [5, 6]. [11] introduces a warning 

threshold for detecting the unexpected 

incidences of Tuberculosis (TB) using 

a Hidden Markov Model (HMM) and 

it was concluded that the warning 

threshold constructed based on the 

Periodic Autoregressive Model can be 

regarded as a useful alternative for 

HMM in detection of the weeks with 

unexpected incidence of TB, therefore 

it was suggested for monitoring TB 

surveillance. This research uses higher 

order markov model on the application 

of DOTS with state of the patients 

(success, failure). This will help to the 

determine future condition of patients 

and the efficient control of 

Tuberculosis by concentrating on the 

initial conditions of TB patients and 

focus on other factors that can improve 

the condition of patients because the 

conditional probability of being in the 

current state depends on the previous 

state. This will also help in reducing 

cost and making decision on policies 

on DOTS. 
 

5.0 Conclusion  

The Higher Order Markov Model has 

helped in obtaining vital information 

on the observable states of patients and 

has served as an efficient and effective 

tool for classifying the patients based 

on their observable states. The 

information obtained from this model 

can be used by the health organization 

to enable them operate maximally in 

combating the menace and deadly 

effect of tuberculosis. A quick look at 

the results for different models reveals 

that with order increasing for a specific 

model the number of estimated 

parameters increases rapidly. It is not 

surprising, therefore, that higher order 

models do a comparatively good job in 

fitting data structures and stating the 

best model with a lower AIC and BIC 

in the second order when compared 

with the first order. Hence, the best 

fitted model is the second order 

Markov model with AIC (132.649) 

and BIC (134.219).  The model has 

parameters λ1 = 0.5 for the first lag, λ2 

= 0.5 for the second lag.  
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Table 1: Number of Independent parameters by order in HOMC 

Number of 

State(m) 

Order(k) Markov Chain 

2 1 2 

 2 4 

 3 8 

 4 16 

3 1 6 

 2 18 

 3 54 

 4 162 

4 1 20 

 2 100 

 3 500 

 4 2500 

 

Table 2: The probability transition matrix of order 1  

                  1 2 

1  0.5555556  0.09313725 

2  0.4444444  0.90686275 

 

Table 3: Mean transitions of order1 

                1                2 

1  34.58334   5.797794 

2  27.66666  56.452206 
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Table 4: The probability transition matrix of order 2  

                1               2 

1   0.4666667  0.1133005 

2   0.5333333  0.8866995 

 

Table 5: Mean transitions of order 2 

               1                2 

1  28.81667   6.996306 

2  32.93333  54.753694 

 

Table 6: Model selection with AIC  

Order Log likelihood k AIC 

1 -95.6623 2 195.3247 

2 -62.3243 4 132.6486 

3 -45.4162 8 106.8324 

 

 
Table 7: Model selection with BIC 

Order Log likelihood 2Loglikelihood k klog(n) BIC 

1 -95.6623 191.3247 2 4.792399 196.1170587 

2 -62.3243 124.6486 4 9.570788 134.2193878 

3 -45.4162 90.8324 8 19.14158 109.9739756 
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