

Potentially Exploitable Base-Metal Containing Bentonite Clay Minerals of Ibeshi-Ikorodu South-Western Nigeria for Oil Bleaching

By

*¹Inegbenebor Adedayo I.

²Sanya Olu Olukayode P,

³Ogunniran, Kehinde O,

⁴Inegbenebor Anthony O

&

⁵Adekola Adefolake O.

^{1, 2, 3, 5}Chemistry Dept, ⁴Mechanical Engineering Dept. College of Science and Technology, Covenant University, Canaanland, Ota, Ogun State, Nigeria

*E-mail: adedayo.inegbenebor@covenantuniversity.edu.ng

Abstract: The experiment has been undertaken to evaluate the bleaching capacity of Ibeshi Montmorillonite-Bentonite clay to be used on soya bean oils (edible oils). The clay capacity for bleaching was evaluated before and after acid activation processes. The acid-activated Bentonite was prepared from raw Bentonite with sulphuric acid of concentrations 6 M, 7 M, and 8 M; this is because availability of hydrogen is a competitor at ions exchange site. Acid activation promotes catalytic activities by increasing the number of active sites of the clay samples. The results from AAS, GC-MS analysis and the spectra of the raw clay indicated that the dominant components present were Al₂O₃, MgO, CaO, Na₂O, and K₂O together with Fe₂O₃, TiO₂ MnO₂ and P_2O_5 . The ratio of Na₂O:CaO is 0.24-0.30, a value less than one, indicative the presence of montmorillonite, and the SiO_2 : Al₂O₃ between ratio of 1.12-1.50 greater than one. The optimum acid concentration for industrial bleaching is 6 M H₂SO₄. However, the exchange capacity was observed at pH 7. The work has shown that activated montmorillonite/Bentonite clay has other useful organic compounds such as organic complexes 2, 4-Nonadienal; up to 8% α -Tocopherol. Tests for bleaching performance evaluation confirmed that the clay has moderately bleaching action as shown by percentage colour reduction. The colour reduction for natural clay was 9.1%, this value increases to 27.3% after 8M H₂SO₄ activation. Other properties include the structural characteristics, free fatty acid value, viscosity were also recorded. The availability of Bentonite across Nigeria makes it a potential industrial mineral for the economy development.

Keyword: Bentonite, clay, dominant, components, acid-activated

Introduction

Montmorillonite (Bentonite) belongs smectite group, monoclinic to silicates of general formula $X_{0.3}Y_{2}$ nH₂O. here Х $_{3}Z_{4}O_{10}$. is exchangeable ions = Ca/2, Li, Na; Y = Al, Cr⁺³, Fe⁺², Fe⁺³, Li, Mg, Ni, Zn; Z = Al. Si. Bentonite is formed after volcanic ash has weathered and aged in the presence of water. It has a negative electromagnetic strong charge. Bentonite clay is a very unique substance, formed primarily of Montmorillonite, which is an extremely flat crystal flake that carries a relatively strong negative ionic charge [1-2]. The negative charge is compensated for by adsorbing a cation (sodium, calcium, potassium, sodium) to the interior of the molecule, (Figure 1); this is what makes it base-metal containing Bentonite clay mineral. The clay can acid activated. be The Montmorillonite, a three layered type of clay has octahedral sheet between two tetrahedral sheets. The ore consists essentially of aluminum silicate sheet structures, and the exchangeable cation is located in interlayer positions or adjacent to the particular surface. When particles of aluminum silicates are placed in the aqueous/polar solution, the interlayer and surface cations are displaced and replaced quickly, by cations from solution and the mineral grains subsequently recovered without approachable gross structure

damage. Montmorillonite-Bentonite clays therefore come in different varieties depending on which elements are most concentrated in it.

Bentonite clay is chosen for the experiments on edible oil bleaching for its expansible property. The clay when acid activated create more void space through leaching of some components and cation-hydrogen ion exchangeable. In activated state, it acts as catalyst, [3-4]. It has been suggested [4-9] that the greater the concentration of the acid, the greater catalytic supports. In the the chemical industry, there is increase in discoloration and purification when this clay is used. These properties contribute to the use of the clay as component of carbonless copying paper and detergent in paper industries.

Bentonite deposits have been discovered in many Nigerian states, [7-9] cutting across the entire Nigeria. In Yobe, Taraba, Adamawa and Borno an estimate of a probable reserve of over 700 million tones has been indicated. Similarly, over 90 million tones have been reported in Ekpoma-Igunebon, Afuze. Ovibiokhuan and Okpebho, Edo State. Some occurrences have also been reported in Abia, Ebonyi and Anambra States (Table 1). The availability of Bentonite in nearly all the states in Nigeria with the wide range of industrial applications

enhances the attractiveness of the Bentonite processing ventures; hence, improvement in economy of the country.

The present investigation involves the characterization and bleaching property evaluation of Montmorillonite-Bentonite clay collected from Ikorodu-Ibeshi, South-West, Nigeria. The aim of the project was to evaluate the bleaching capacity of Ibeshi Bentonite on soya

bean oils (edible oils) before and after acid activation processes while objective enables the the performance evaluation of Nigeria Bentonite for better utilization for production in industries. The results reveal both chemical and physical properties, some of which are the structures characteristics, free fatty acid value, viscosity and elements present in the materials.

S/No	State	Location					
1	Edo	Afuze, Ekpoma-Igunebon road,					
		Ovibiokhuan, and Okpebho.					
2	Anambra	Awgu					
3	Borno	Dikwa, Ngala, New Marte,					
		Mongonu and Mafa					
4	Sokoto	Dukamaje and Kalambaina					
5	Lagos	Ibeshi LGA					
6	Yobe	Fika					
7	Taraba	Ibi and Durngel					
8	Adamawa	MayoBelwa					
9	Abia	Umuahia South					
		Umuahia North					
11	Gombe	Pindiga					

Table 1: States and Locations of Bentonite Deposit in Nigeria

Table 2: Chemical Properties of Soya bean Oil

Parameters	Amount in Soya bean Oil			
Fatty Acid value	0.5 mg KOH/g			
Saponification	16.83 mg/g			
value (S)				
Iodine value g	71.32 g/100 g			
/100g				
Refractive index	1.645			
(25°C)				
Viscosity (ŋ)	$39.70 = 3.72 \text{ m}^2/\text{s}$			
(m^2/s)	$40.91 = 3.83 \text{ m}^2/\text{s}$			

	$41.28 = 3.86 \text{ m}^2/\text{s}$
Peroxide value	52 m mol peroxide/kg sample
pH	6.4 at 23.2°C
pН	6.7 at 24.6°C

Methodology Sample Collection

The Bentonite clay minerals of Ikorodu were obtained from Ibeshi industrial site, in Lagos state. There was intensive biogenic mixing and irrigation of the bottom place, to the upper few centimeters at the mud. We therefore infer that the influence of macro fauna on the chemistry of the bottom would be limited largely to the surface of the deposit, approximately 10-30 cm in depth. Samples were therefore taken beneath outcrop. Particular attention was paid to mineralogy of the sections of the lumps under reflected light and brushing of the surface. Never-the-less, Bentonite occurs as dark red to tan pink complex growth. Several lumps of samples were taken for subsequent analysis.

Physico-Chemical Analysis of Soya beans

Soya beans used in this study was bought from local market in Iyana, Ota, Ogun state. The oil was extracted in the Chemistry laboratory University. Covenant All at chemicals used were analytical grade. The results of measurements the taken for following were recorded Table 2. in These procedures were carried out for the physico-chemical analyses of both bleach and unbleached oil.

Free Fatty Acid

The oil (10 g, 50 ml) was dissolved in ether and ethanol (25 ml, 95% v/v) in conical flask (250 ml), followed by addition of phenolphthalein indicator (3 drops). This was titrated against KOH (0.1 M) with constantly shaking until a pink color which persists for 15 secs is obtained.

Acid Number / Acid value of oil / Free Fatty Acid = Titre value (X) x Conc. (M) of KOH x 5 /

Mass of oil in gram

Iodine Value of oil / Refractive index/ Viscosity

The extracted oil (0.2 g) was accurately weighed into an iodine flask (25 ml), chloroform (10 ml), iodine solution drained into sample bottles and made up to volume. The refractive index of the soya bean oil was determined using Abbe refractometer. The viscosity of the soya bean oil was determined using a viscometer.

Peroxide / Saponification value

The oil (1 g) was weighed into a clean dry beaker, and then powdered KI (1 g) was added. Glacial ethanoic acid and chloroform (2:1, v/v, 20 ml) were also added. This solution was boiled vigorously for 30 seconds; the content was poured quickly into a

conical flask containing KI solution (20 ml, 5%). This solution was titrated with $Na_2S_2O_3$ solution (0.002 M) until yellow color disappeared. Starch (0.5 g) was added, shook vigorously and titrated carefully until blue colour disappeared. Blank solution was measured at the same time for peroxide value determination.

The oil (5 g) was weighed into a conical flask; alcohol (50 ml) was added. Potassium hydroxide was added from the burette by draining for five hours. A blank was prepared by taking KOH (50 ml) drained from the burette. A reflux condenser was connected to the flasks and boiled gently for one hour. The flask and condenser were cooled; indicator (1 ml) was added and titrated against HCl (0.5 M) until the pink color just disappeared, saponification value was then measured.

Pretreatment / Analyses of the raw Bentonite

Bentonite samples were dried at 105° for 4 hours in a drying air oven and then grounded using a mortar and pestle. Other larger samples were crushed using magnetic rotator. A sieve shaker was used to sieve the Bentonite to powder [10]. These samples were ready for chemical analysis, physical-chemical tests, characterization and acid activation.

Bentonite swelling capacity Test / pH

Three (10 g each) portions of dry Bentonite were weighed into a measuring cylinder, followed by addition of distilled water (60 ml). The content in the cylinder was shaken for 10 minutes and left for three days to allow swelling of the clay. The Bentonite samples (3) were left in a beaker; swelling occurred at an increase of 5 ml after 3 days to 15ml. Physico-chemical analyses were carried for both bleach and unbleached oil.

At 6 M

% Swelling capacity, (BC %) = (Vol. of Bleached oil) - (Vol. of Unbleached oil)

x 100% /

(Vol. of Bleached oil)

$$(2.276) - (1.504) / (2.276) = 0.34\%$$

7 M

(Bleached oil) - (Unbleached oil) x 100% / (Bleached oil) (1.63) - (1.504) / (1.63) = 0.08% 8 M

(Bleached oil) - (Unbleached oil) x 100% / (Bleached oil) (1.649) - (1.504) / (1.649) = 09%

The pH of the Bentonite was determined by dissolving 30 g of the clay into 180 ml distilled water and

stirring for few minutes. Electrode, 9024 model microcomputer pH meter (Hanna products), was used. Both the reference and indicator electrodes were cleaned with tissue paper, then dipped into distilled water (100 ml) for 30 mins, until the reading is pH 7. The indicator electrode was removed from the distilled water and dipped into solution of the sample and stirring continued for few minutes; then the reading was recorded.

Preparation and analyses of acid activation of Bentonite

Acid-activation Bentonite were prepared (from the above raw Bentonite) with sulfuric acid, 6 M, 7 M, and 8 M magnetic stirring for 1 hour at 60° on hot plate. The ratio of Bentonite to sulfuric acid solution was $1 \div 2$ (w/v). The filtered clay was then dried at 60° to reduce moisture content until the weight was constant. The dried acidactivated Bentonite was kept in sample nylons for study of oil bleaching.

Bleaching of the soya bean oil

The three acid activated Bentonite samples were weighed (10 g) into various beakers labeled 6 M, 7 M, and 8 M respectively. The soya bean oil (20 ml) was added into the same container as the Bentonite. The solution was stirred for 1 hour using hot plate, after which it was filtered with double-layer filter papers. The bleached soya bean oils were ready for further tests.

Evaluation of bleaching performance / Bentonite GC/MS Analysis The maxima absorbance wavelength and absorbance values of chlorophyll and carotene were obtained by using spectrophotometer. UV-VIS а capability, BC Bleaching was monitoring evaluated by the every absorbance maxima at wavelength, applying the following formula.

$$\begin{split} BC &= A^{o}_{\lambda} \text{ (Neutralized oil) - } A_{\lambda} \\ \text{(Bleached oil) } x100\% \text{ / } A^{o}_{\lambda} \\ \text{(Neutralized oil)} \\ \text{Here, } A_{\lambda} \text{ is the optical density at} \\ \text{wavelength } \lambda. \end{split}$$

The procedure employed in this work, for chemical analysis of Bentonite are Gas Chromatography Mass Spectrometry (GC/MS) and Atomic Absorption Spectroscopic (AAS) analytical techniques. The results obtained for base-metal containing clay minerals of Ibeshi-Ikorodu South Western Nigeria are as shown in Figures 2-9 and Tables 3-4.

Results and Discussion

The compositional analysis from atomic absorption spectroscopy characterization, showed the ratio of Na₂O:CaO be 0.24-0.30, a value less than one, indicative the presence of montmorillonite. Furthermore, the SiO₂: Al₂O₃ between ratio of 1.12-1.50 (greater than one) is suggestive a clay suitable for bleaching. However, associated clay minerals, for example Zeolite can be present at Ibeshi because of their similar chemical composition [3]. Laboratory tests for the evaluation of acid activation and bleaching performance of Ibeshi clay gave percent colour reduction of 9% increased to 28% after 8 M H₂SO₄ activation, a value moderate for effective bleaching. The ion is thought of as being derived from orthosulicic acid H₄SiO₄ during acid activation. This is possible because of the octahedral layer (Figure 2). The Na⁺, the exchange takes place in aqueous solution, so that H^+ is available as a competitor at exchange sites. The exchange capacity is observed at pH 7 or higher, but H⁺ interference may occur in some systems. The clay has bleaching action.

In Montmorillonite. there is substitution in the octahedral and tetrahedral units giving, excess Figure charges, negative 1. unsatisfied valences on edge of units. It has been shown [11-12] that a 100 g sample of Montmorillonite when treated with a NaCl solution so that all exchange site are occupied by sodium ions, and then placed in a series of strong KCl solution, sodium appear moderate ions in concentration in the firsts treating solution, and lesser concentration in succeeding KCl solutions.

Physico-Chemical Parameters of Oil

The physical state of soya bean oil is liquid in nature; the colour is dark brown and odorless. Other physical properties of soya bean oil are listed in Table 2.

Analyses of bleaching capacity

According to the absorbance read on UV-VIS analysis, Figures 2-6, each of the four samples, the absorbance of the unbleached was the lowest; this is because of the compounds present during acid activation of Bentonite. At 6 M the absorbance recorded was very high compared to the peaks at 7 M and 8 M, which further explains that 6 M is the most suitable molarities of acid activation for bleaching to occur. The optimum acid concentration for industrial bleaching could be 6 M H₂SO₄.

GC/MS

In the GC-MS analysis, Figures 7-9, of the raw Bentonite, the spectra show the dominant components present in the raw Bentonite: SiO₂, Al₂O₃, Fe₂O₃, MgO, CaO, Na₂O, K₂O, TiO₂, MnO₂ and P₂O₅. Results in Tables 3-4, revealed the presence of other organic compounds: 8% vitamin E (α -Tocopherol), which is used in body creams to remove scars [3], stigmasterol was 9%, and this is similar to animal cholesterol use to cure various types of cancer such as: colon, ovarian, breast and prostate cancers. This is to say that Bentonite can also be described as a "Healing balm", asides its bleaching property vegetable oils. However, for bleaching of the oils by adsorption could have removed some pigments. The GC-MS spectra of the oil showed a change in the total percentage of the components in the unbleached and bleached oil. In the unbleached the total percentage of the components present is higher because of the other compounds present while the total percentage in the bleached is reduced.

Conclusion

The exchange capacity at pH 7 makes the system none acidic. of Absorbance capacity other compounds by Bentonite from the unbleached soya bean oil is prominent in the work. The bleaching performance evaluation confirmed that the Bentonite clay minerals of Ibeshi-Ikorodu South-Western Nigeria have moderately bleaching action. The availability of

Bentonite in Nigeria and the wide of industrial applications: range enhance the attractiveness of the Bentonite processing ventures. This add values to could export commodities of the country. The studies of scope of Montmorillonite/Bentonite orebodied areas in Nigeria should be expanded to an extent where there is а need for individuals with in competence separate areas: geochemistry. biotechnology, mineral processing, material engineering, and medicinal sciences.

Acknowledgement

We wish to acknowledge Owoeye, Taiwo Felicia for her assistance during laboratory work.

Figure 1: Chemical structure of Montmorillonite

Figure 3: UV-VIS analysis of unbleached oil

Figure 4: UV-VIS analysis of bleached oil at 6M

Covenant Journal of Physical and Life Sciences (CJPL) Vol. 2, No. 2. December, 2014.

Figure 5: UV-VIS analysis of bleached oil at 7M

Figure 6: UV-VIS analysis of bleached oil at 8M

Figure 7: Image of GC-MS analysis on raw Bentonite

Figure 8: Image of GC-MS analysis on unbleached oil

Figure 9: Image of GC-MS analysis on bleached oil

 Table 3:
 Ikorodu/Ibeshi Bentonite-Montmorillonite Data Path

Data Path : C:\msdchem\1\methods\THC.M\ Data File : Folake 1 mm.D Acq On : 25 Mar 2014 15:26 Operator: MEJIDA/ACHEM Sample : Folake 1 Misc : ALS Vial: 3 Sample Multiplier: 1 Search Libraries: C:\Database\NIST08.L Minimum Quality: 90 C:\Database\NIST11.L Minimum Quality: 90 Unknown Spectrum: Apex Integration Events: ChemStation Integrator - events.e

Pk#	RT Area%	Library/ID	Ref#	CAS#	Qual	
1	16075					
I	16.875	8.31 C:\Database\NIST08.L	04604	005150 04 5	01	
		2, 4-Decadienal, (E,E)-	24684	025152-84-5	91 72	
		2, 4-Decadienal, (E, E) -	24685	025152-84-5	72	
		2, 4-Nonadienal	17289	006750-03-4	64	
2	17.442 14.78	C:\Database\NIST11.L			~	
		2, 4-Decadienal, (E,E)-	25130	025152-84-5	87	
		2, 4-Decadienal, (E, E) -	25129	025152-84-5	87	
_		2, 4-Nonadienal	17515	006750-03-4	86	
3	28.079 2.68	3.079 2.68 C:\Database\NIST11.L				
	1, 1,	1, 5, 7, 7, 7-Heptamethyl-3,3-bis	(22566	1 038147-00-1	72	
	trime	ethylsiloxy)tetrasiloxane				
	2-(2', 4', 4', 6', 6', 8', 8'-Heptamethy 242215 145344-72-5					
	Ltetrasiloxan-2'-yloxy)-2, 4,4,6,6,					
	8, 8, 10, 10-nonamethylcyclopentasiloxane					
	3-Iso	propoxy-1, 1, 1, 7, 7, 7-hexamethy	240263	8 071579-69-6	25	
	1-3,5	,5-tris(trimethylsiloxy)tetrasiloxan	e			
4	28.462 2.65	C:\Database\NIST11.L				
	2-Isc	propyl-5-oxohexanal	28978	015303-46-5	40	
	Oxir	ane, dodecyl-	71312	003234-28-4	16	
	2-Pi	peridinone, N-[4-bromo-n-butyl]	88460	195194-80-0	12	
5	29.870 9.71	C:\Database\NIST08.L				
	Hexadeca	noic acid, methyl ester	113690	000112-39-0	97	
	Pentadeca	noic acid, 14-methyl-, me	113705	5 005129-60-2	97	
	thyl ester	, , ,				
	Hexadeca	noic acid, methyl ester	113682	2 000112-39-0	97	
6	30.791 1.91	C:\Database\NIST11.L				
	3-Isopropo	xy-1, 1, 1, 7, 7, 7 hexamethy	240263	8 071579-69-6	59	
	1-3.5.5-tris	(trimethylsiloxy)tetra	2.0200		0,	
	siloxane	(
	Hexasilox	ane_tetradecamethyl-	22869	2 000107-52-8	50	
	Octasiloxa	ne 1133557799	240341	019095-24-0	40	
	11 11 13	13 15 15-hexadecamethyl-	2-103-11	019095 24 0	-10	
7	32 754 27 54	C·\Database\NIST08 I				
7	9 12 - 0 cta	decadiencic acid methyl	132250	002462-85-3	00	
	9, 12-00ta	decadenoic acid, mentyr	132232	002402-05-5))	
	9.12-Octa	decadienoic acid methyl	132278	8 002566-97-4	00	
	9, 12-001)	132270	3 002300-97-4	77	
	0.12 Octa	locadionoic acid (77)	120073	8 000112 63 0	00	
	9,12-Octa	fecalienoic acid (Z,Z)-,	13227.	000112-03-0	77	
	wieuryi est					
Q	22 840 10	12 C. Dotoboso NICTOR I				
0	52.040 19.4	+2 C. (Database (INIS I Vo.L	122701	002777 59 4	00	
	(7)	enore actu, meuryi ester,	155721	002///-38-4	フフ	
	(Z)-					

	9-Octadecenoic acid (Z)-, methyl e	133717 000112-62-9	99
	Cis-13-Octadecenoic acid, methyl e 133713	1000333-58-3	99
9	33.223 3.08 C:\Database\NIST11.L		
-	Methyl stearate	143127 000112-61-8	87
	Methyl stearate	143126 000112-61-8	64
	Methyl stearate	143128 000112-61-8	50
10	33.269 3.39 C:\Database\NIST11.L		
	Squalene	215930 000111-02-4	38
	2, 6, 10-Dodecatrien-1-ol, 3, 7, 11-TR	79440 003790-71-4	38
	imethyl-, (Z,E)-		
	2, 6, 10-Dodecatrien-1-ol, 3, 7, 11-TR	79429 004602-84-0	38
	imethyl-		
11	35.558 3.37 C:\Database\NIST11.L		
	1, 1, 1, 5, 7, 7, 7-Heptamethyl-3, 3-bis (225661 038147-00-1	50
	trimethylsiloxy)tetrasiloxane		
	Heptasiloxane, 1,1,3,3,5,5,7,7,9,9	235668 019095-23-9	38
	, 11, 11, 13, 13-tetradecamethyl-		
	3-Isopropoxy-1, 1, 1, 7, 7, 7-hexamethy	240263 071579-69-6	37
	L-3, 5, 5-tris(trimethylsiloxy)tetra		
	siloxane		
12	38.201 3.16 C:\Database\NIST11.L		
	Cyclononasiloxane, octadecamethyl-	242431 000556-71-8	72
	1, 1, 1, 5, 7, 7, 7-Heptamethyl-3, 3-bis (225661 038147-00-1	50
	trimethylsiloxy)tetrasiloxane		
	Hexasiloxane, tetradecamethyl-	228692 000107-52-8	47

Table 4: THC.M. Data Path

Wed Mar 26 10:47:56 2014 Area Percent Report Data Path : C:\msdchem\1\methods\THC.M\ Data File : Folake 1 mm.D Acq On : 25 Mar 2014 15:26 Operator: MEJIDA/ACHEM Sample : Folake 1 Misc : ALS Vial: 3 Sample Multiplier: 1 Integration Parameters: events.e Integrator: ChemStation Method : C:\msdchem\1\methods\THC.M Title : Signal : TIC: Folake 1 mm.D\data.ms

Covenant Journal of Physical and Life Sciences (CJPL) Vol. 2, No. 2. December, 2014.

Peak	R.T.	first	max	last	РК	peak	corr.	corr.	% of
#	min	scan	scan	scan	ΤY	height	area	% max.	total
1	16.873	2224	2235	2256	BB 2	43155	1329182	0.19%	8.315%
2	17.440	2316	2334	2345	BV	77464	2362689	53.66%	14.780%
3	28.079	4173	4193	4204	BV 2	16190	427760	9.72%	2.676%
4	28.463	4250	4260	4280	BB 3	14706	423150	9.61%	2.647%
5	29.872	4485	4506	4524	BV	49105	1552677	35.27%	9.713%
6	30.790	4656	4667	4675	PV 2	13066	305601	6.94%	1.912%
7	32.756	4990	5010	5018	BV 2	140557	4402859	100.00%	27.543%
8	32.842	5018	5025	5057	VV 5	78596	3105088	70.52%	19.424%
9	33.223	5057	5092	5096	PV 5	18900	491706	11.17%	3.076%
10	33.271	5096	5100	5110	VV 4	19439	541519	12.30%	3.388%
11	35.559	5482 5	500	5513	BV 2	18318	537937	12.22%	3.365%
12	38.202	5941	5962	5981	BB 3	13077	505469	11.48%	3.162%
	Sum of corrected areas: 15985636								

THC.M Wed Mar 26 10:48:33 2014

References

- Barcroft, P., (1973), Minerals and Crystals, The Viking Press, New York, pp. 99.
- Bariand, P., (1976), Marvellous World of Minerals, Abbey Library, Stuttgart, pp.55-70.
- M. Oribayo, Usman, A., O.. Adebayo, A. A., (2013),Palm Bleaching of oil bv activation local Bentonite and Kaolin Clay from Afashio, Edo-Nigeria. Chemical and processing Research 10, pp. 1-11.
- Zhansheng, W. U., Chun, I. L., Xiaolin, X. U., Xifang, S. U. N., Bin, D. A. I., Jin, L. I., Hongsheng, Z. H. A. O., (2006), Characterization, Acid Activation and Bleaching Performance of Bentonite from Xinjinag. Chinese Journal Chemical Engineering 14(2), pp. 253-258.

- Christidis, G. E., Scott, P. W., Dunham, A. C., (1997), Acid Activation and Bleaching of Bentonites from the Islands of Milos and Chios, Aegean Greece. Applied Clay Science, 12 pp. 329-347
- Komadel, P., Schmidt, D., Madejova, J., Cicel, B. (1990), Alteration of Smectite by treatment with Hydrochloric Acid and Sodium Carbonate solution. Applied Clay Science, 5, pp. 113-122
- Azeez, B. K., Abdullahi, M. A., Jubreal, K. J., (2011), Acid Activation and Bleaching Capacity of Some Local Clays for Decolorizing used oils. Asian Journal of Chemistry, 23(6), pp. 2449-2455.
- Ajemba, R. O., Onukwudi, O. O., (2012), Response Surface optimization of Palm oil bleaching using, hydrochloric acid activated Ukpor Clay

European Journal of Scientific Research, 82(3), pp. 125-339

- Srasra, E., Bergaya, E., Van Damme, H., Ariguib, N.K., (1989), Surface Properties of an Activated Bentonite Decolorization Of Rape-Seed Oils. Applied Clay Science 4, pp. 411-421.
- Rozic, L., Novakovic, T., Petrovic, S., (2010), Modelling and Optimization process parameter of Acid Activated of Bentonite by Response Surface Methodology. Applied Clay Science, 48, pp, 154-158.
- Olokodana, F. A., (2003), Analysis of Fats and Oil: Workshop on sample preparation for the Analysis of Foods Raw and processed, Lagos Institute of Public Analysis of Nigeria pp. 17-44.
- Azeez, B. K., Abdullahi, M. A., Jubreal, K. J., (2011), Acid Activation and Bleaching Capacity of Some Local Clays for Decolorizing used oils. Asian Journal of Chemistry, 23(6), pp.2449-2455.