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Abstract: This paper presents the position and trajectory tracking control 

scheme for the ball and plate system (BPS) using the double feedback loop 

structure (a loop within a loop) for effective control of the system. The inner 

loop was designed using linear algebraic method by solving a set of 

Diophantine equations. The outer inner loop was designed using   sensitivity 

approach. Simulation results showed that the plate was stabilized at 0.3546 

seconds, and the ball was able to settle at 1.7087 seconds, when given a 

circular trajectory of radius 0.4 m with an angular frequency of 1.57 rad/sec, 

with a trajectory tracking error of 0.0095 m, which shows that the controllers 

have adaptability, strong robustness and control performance for the ball and 

plate system.              
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1. Introduction 

The ball and plate system (BPS) 

problem is a benchmark for testing of 

control algorithms. The BPS is one of 

the most enduringly popular and 

important laboratory models for 

teaching of the control systems 

engineering (Oravec et al., 2015; 

Zeeshan et al., 2012). It is amongst the 

most well-known and challenging test 

platform for the control engineers. 

Example of such systems include the 

ball and beam system (BBS), traditional 

cart-pole system (inverted pendulum), 

double and multiple inverted pendulums 

(Cheng & Tsai, 2016; Mohajerin et al., 

2010). The BBS is a well-known 

problem for nonlinear control where the 

system is under-actuated and has two 

degree of freedom (DOF), while the 

BPS can be considered as an extension 

of the BBS, consisting of a ball that can 

roll freely on a plate. Therefore, the BPS 

has four DOF, and it is more 

complicated due to the coupling 

between the variables (Kassem et al., 

2015). This under-actuated system has 

only two actuators, which is stabilized 

by just two control inputs (Borah et al., 

2017; Ghiasi & Jafari, 2012). The 

system consist of a plate pivoted at its 

center such that the slope of the plate 

can be manipulated in two perpendicular 

directions (Dong et al., 2011). However, 

since the movements of the ball can 

reach high speeds, the design of a 

suitable controller for the BPS is a 

major challenge (Galvan-Colmenares et 

al., 2014). The BPS is made of a small 

ball and plate with two mutually 

perpendicular axis of rotation (Fei et al., 

2011). 
 

A servo system consist of motor 

controller card and two servo motors to 

tilt the plate. Intelligent vision system is 

used for measurement of a ball position 

from a CCD camera. The problem of the 

motion control of this system is to 

control the position of a ball on a plate 

for both static positions and desired 

paths. The slope of the plate can be 

manipulated in two perpendicular 

directions, so that the tilting of the plate 

will make the ball move on the plate 

(Dong et al., 2009; Dong et al., 2011). 
 

The system has demonstrated various 

controller design methods for 

positioning and trajectory tracking of 

the ball; proportional integral derivative 

(PID) control, fuzzy control, neural 

network control and model predictive 

control (Mochizuki & Ichihara, 2013). 
 

The system finds application in areas 

like humanoid robot, satellite control 

and unmanned aerial vehicle (UAV) 

(Mukherjee et al., 2002) in the field of 

path planning, trajectory tracking and 

friction compensation (Oriolo & 

Vendittelli, 2005). 
 

However, various control methods have 

been introduced in the recent years for 

the BPS. A controller design for two 

dimensional electro-mechanical ball and 

plate system that was based on the 

classical and modern control theory was 

proposed by (Knuplež et al., 2003). In 

the work of (Hongrui et al., 2008), the 

position of the ball was regulated with a 

double feedback loop system, in which 

recursive back-stepping design was 

employed for the external loop, while 

switching control scheme was employed 

for the inner loop. (Farooq et al., 2013) 

designed a simple interval type-2 fuzzy 

gain scheduling controller for the 

stabilization and reference tracking of 

the BPS. The developed controller was 
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compared with pole placement and type-

1 fuzzy logic controller, in which it 

outperformed the two other controllers 

with respect to settling time, percentage 

overshoot and disturbance rejection 

capability. 

In the work of (Lin et al., 2014) , a 

controller was designed which ensured 

the BPS stability by employing a loop 

shaping method based on Normalized 

Right Coprime Factor (NRCF) 

perturbation model, in which the well-

known lead-lag series compensation 

design methods were innovatively 

adopted to obtain appropriate pre and 

post compensators as the weighting 

functions to guarantee the BPS time 

domain performance requirements. A 

unique motion controller, based on the 

evolved lookup tables have been 

developed by (Beckerleg & Hogg, 2016) 

in order to move a ball on a set-point on 

a typical BPS. Also, in order to 

overcome the problem of under-

actuation, instability and nonlinearity, 

which is attributed to the BPS. 
 

However, (Roy et al., 2016a) presents a 

comparative study between a cascaded 

fractional order sliding mode controller 

(FOSMC) and sliding mode controller 

(SMC) for trajectory control of a ball in 

a BPS, the FOSMC was designed by 

choosing a fractional order sliding 

surface. The proposed control strategies 

was experimentally validated on a ball 

and plate laboratory setup (Feedback 

Instrument Model No. 033-240), 

simulation and experimental studies 

showed that the FOSMC outperformed 

the SMC in terms of tracking accuracy, 

speed of response, chattering effect and 

energy efficiency. Also, a cascaded 

SMC was proposed by (Roy et al., 

2016b) for position control of a ball in a 

BPS. The effectiveness of the proposed 

controller was tested through simulation 

studies by making the ball follow a 

circular and a square shaped trajectories, 

and the effect of undesirable 

phenomenon of chattering associated 

with SMC was found within satisfactory 

limit. And (Das & Roy, 2017) dealt with 

a comparative analysis of the 

performance of SMC and FOSMC when 

applied to the problem of trajectory 

control of ball in a BPS. The two control 

algorithm were simulated on MATLAB-

Simulink environment, and 

experimental validation was later carried 

out on a BP laboratory setup (Feedback 

Instrument Model No. 033-240). 

Simulation and experimental results 

conveyed that FOSMC performs better 

than SMC in terms of speed of response 

and tracking accuracy without 

increasing the level of chattering and 

control effort. Also, (Cheng & Tsai, 

2016) presented a skillful robotic wrist 

system using a visual control technique 

to demonstrate dexterity of the 

mechanical wrist from the viewpoint of 

the table tennis. Intelligent control 

algorithm using Linear Quadratic 

Regulator (LQR) approach was 

developed to adjust the plate’s altitude 

to guide the ball to a specific position to 

achieve given balancing tasks. 
 

(Debono & Bugeja, 2015) proposed and 

examined the application of sliding 

mode control (SMC) to the control 

problem of the ball and plate. The linear 

full-state feedback controller was 

compared with the SMC, and the 

performance between the SMC and 

linear full-state feedback controller was 

tested experimentally on a designed and 

constructed physical test bed that was 

meant for the purpose of the research. 
 

One of the most effective control 

scheme of the BPS is the double 

feedback loop structure, i.e. a loop 

within a loop. The inner loop serves as a 
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Abubakar Umar, et al                                                                                                                    CJICT  (2018)  6(1) 1-15 
 

dc motor servo position controller, while 

the outer loop controls the position of 

the ball (Liu & Liang, 2010). 
 

In this paper, the ball and plate system is 

considered as a double feedback loop 

structure for position and trajectory 

tracking control. The outer feedback 

loop is used regulate the ball’s position 

on the plate, and this is based on   

controller. The inner feedback loop, 

which is being controlled by a servo 

controller, drives the plate’s slope to 

follow the reference position, which will 

be designed based on linear algebraic 

method by solving a set of Diophantine 

equations. The rest of the paper is 

organized as follows. Section 2 

introduces the modelling of the BPS, 

also the design of the inner and outer 

loop controller is discussed in section 3. 

However, section 4 shows the 

simulation results and the trajectory 

tracking control of the ball on the plate. 

And finally, section 5 presents the 

conclusion. 
 

2.Mathematical Modelling 

Figure 1 shows a typical laboratory 

model of the BPS by HUMUSOFT

 

 

 
                         Figure 1. The ball and plate system (bps) by humusoft (humusoft ltd., 2012a) 

 

 

                 Figure 2 shows the schematic model diagram of the BPS. 
 

 
                     Figure 2. The schematic model for the ball and plate system 

 

The plate rotates around the x and y-axis 

in two perpendicular directions. The 

kinematic differential equations of the 

BPS are obtained using the Euler-

Lagrange equation given as (Morales et 

al., 2017; Yıldız & Gören-Sümer, 2017):  
 

i

i i i

d T T V
Q

dt q q q

  
  

  
                   (1) 

Where iq  stands for the 
thi -direction 

coordinate, T is the kinetic energy of the 

system, V  is the potential energy of the 
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system, and Q  is the composite force. 

The BPS can be simplified into a system 

made up of two rigid bodies; the 

geometry of the plate has limits in 

translation along x, y and z-axis. It also 

has a geometry limit in rotation about its 

z-axis. The plate has two degree of 

freedom (DOF) in rotation about the x 

and y-axis. The ball’s geometry has a 

limit in translation along the z-axis. It 

also has two DOF along the x and y-axis 

respectively. The BPS system model has 

four DOF, in which the generalized 

coordinates are (Hongrui et al., 2008): 

1q x  , 2q y , 3q  , 4q  . 

The total kinetic energy of the BPS is 

given as: 

ball plateT T T                                    (2) 
 

   

 

2 2 2 2

2

2

1

2

b
b b

b
ball

b

J
m x y J

RT

m x y

 

 

  
      

  
 

  
 

             (3) 

 

   

   

2 2 2 2

2

2
2 2

1

2

b
Px py b

b
plate

b b

J
J J m x y

RT

J m x y

 

   

  
      

  
 

    
 

          (4) 

The potential energies of the BPS along 

the x and y-axis is given as: 

sinx bV m gx                                (5)  

                                                                                                                     

siny bV m gy                                  (6)      

And the mathematical equation of the 

BPS is given as: 

 
2

2
sin 0b

b b b b

b

J
m x m x m y m g

R
  

 
      

 

    (7)  

 
2

2

sin 0

b
b b b

b

b

J
m y m y m x

R

m g

 



 
   

 

 

         (8) 

 

 

 

2 2

cos

b b Px b b

b b x

m x J J m xx m xy

m xy xy m gx

  

  

   

   

      (9) 

 
 

2 2

cos

b b Py b b

b b y

m y J J m yy m xy

m xy xy m gy

  

  

   

   

  (10) 

 

 bm kg represents the mass of the ball, 

 2
bJ kgm  is the rotational moment of 

inertia of the ball,  2

xPJ kgm and 

 bR m are the rotational moment of 

inertia of the plate and the radius of the 

ball;  x m and  y m gives the position 

of the ball along the x and y-axis; 

 x m s  and  2x m s are the velocity 

and acceleration along the x-axis; 

 y m s and  2y m s gives the velocity 

and acceleration along the y-axis; 

 rad  and  secrad gives the plate 

deflection angle, and angular velocity 

along x-axis;  rad and 

 secrad gives the plate deflection 

angle and angular velocity along y-axis; 

and  x Nm  and  y Nm  gives the 

torques on the plate in the x and y-axis. 

Equation (7) and (8) describes the ball’s 

movement on the plate; it also shows 

how the effect of the ball’s acceleration 

relies on the plate’s angular deflection 

and its angular velocity.  However, 

equation (9) and (10) describes how the 

dynamics of the plate’s deflection rely on 

the external forces driving it, and the 

ball’s position (Duan et al., 2009). 

Considering the state variable 

assignment of the BPS (Fan et al., 2004): 

   1 2 3 4 5 6 7 8, , , , , , , , , , , , , ,
TT

X x x x x x x x x x x y y                           

(11) 

And the state space equation of the BPS 

is as follows (Fan et al., 2004): 

       5 
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 

 

2
1

2
1 4 4 5 8 32

3 4

4

5 6

2
6 5 8 1 4 8 7

7
8

8

0 0

sin 0 0

0 0

0 1 0

0 0

0 0sin

0 0

0 1
0

x

y

x
x

B x x x x x g xx

x x

ux

ux x

x B x x x x x g x

x
x

x

 
    
     
    
    
                       
     
    
    
        

   (12) 

 

 
1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0
y X

 
  
 

               (13) 

2

b

b
b

b

m
B

J
m

R


 

 
 

                            (14) 

In the steady state, the plate should be at 

a position that is horizontal, where both 

the inclination angles  of the x and y-

axis are equal to zero, if the inclination 

angle of the plate does not have much 

change, i.e. 05 , then, the sine function 

can be substituted by its argument 

(Fabregas et al., 2017). The 

mathematical model of the BPS can be 

simplified and decomposed into x and y-

axis as:  

 
 

21 1

2
1 4 32 2

3 3
4

4 4

0

sin 0

0

10

x

xx x

B x x g xx x
u

x xx

x x

      
      

             
      
       

       (15) 

 
65 5

2
6 65 8 7

7 7
8

8 8

0

sin 0

0

10

y

xx x

x xB x x g x
u

x xx

x x

      
      

                 
      
       

     (16) 

 
 

3.Controller Design 

Determination of the Actuator 

Parameters 

The actuator with a permanent DC 

motor is considered in the inner loop 

design. Also, the relationship between 

L  and ae  is given as (Golnaraghi & 

Kuo, 2010): 

   

1

2

3 2

t

L
L

a eq a eq a eq a eq a t e

N
K

N
T

e J L s J R D L s D R K K s


 
    
 

      (17) 

The parameters of the DC motors are 

derived based on the requirements of the 

load torque, the speed of the motor, and 

the moment of inertia. This is given in 

Table I. 

 
Table 1. BPS System Parameters (Humusoft Ltd., 2012b) 

 

S/N Description Symbol Unit Value 

1 Mass of the 

ball 

m  kg  0.11 

2 Radius of 

the ball 

R m  0.02 

3 Dimension 

of the plate 

(square) 

lxb  2m  0.16 

4 Mass 

moment of 

inertia of 

the plate 

,Px yJ  
2kgm  0.5 

5 Mass 

moment of 

inertia of 

the ball 

bJ  
2kgm  1.76e-

5 

        6 
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6 Maximum 

velocity of 

the ball 

v  
m s  0.04 

 

                           Equation (17) is given as (Umar, 2017): 

 

 

2

0.105

0.47005 421.113

L

ae s s



  

                                

(18) 

 

40.2234 2.49 10

895.89

x

s s s



 


                                  

(19) 
 

3.2 Two-Port Parameter Configuration 

The two-port parameter configuration 

was used in the design of the inner loop. 

To find the value of o , a step response 

is required, which could settle in 0.4 

seconds. From the Humusoft ball and 

plate system manual, through 

simulation, 20 secso rad   was found 

to give the steady state response. The 

ITAE optimal overall transfer function 

with zero position error of the system, 

which is  0G s  is (Chen, 1995): 

 
2

0
0 2 2

0 01.4
G s

s s



 


 
           (20) 

An additional gain of 494 was provided 

to limit the step response using a 

preamplifier.  0G s  is implemented as 

shown in Figure 3 using the two-port 

configuration 

 

r  L s  1A s  G s

 M s








p

u y

 

Figure 3. Two-port parameter configuration 

 

Where  L s ,  M s and  A s  are the 

polynomials that defines the 

compensator, p  which is the input 

disturbance. Solving the Diophantine 

equation, the compensator and the DC 

motor actuator has the following values 

(Umar, 2017): 

  28A s s                                        

(21) 

  3252M s s                                   

(22)  

  3252L s                                          

(23) 
 

3.3 H  Controller  

The augmented plant model for H  

controller can be constructed as (Dingyu 

et al., 2007): 

 
1 2

1 11 12

2 21 22

A B B

P s C D D

C D D

 
 


 
  

                       

(24) 

With the augmented state space 

description as follows: 

  1

1 2

2

u
x Ax B B

u

 
   

 
                    (25) 

1 1 11 12 1

2 2 21 22 2

y C D D u
x

y C D D u

       
        

       
    (26) 

Straightforward manipulations gives the 

following closed loop transfer function: 

             
1

1 1 11 12 22 21Ty u s P s P s I F s P s F s P s


    
      (27) 

The above expression is also known as 

the linear fractional transformation 

(LFT) of the interconnected system. The 
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objective of robust control is to find a 

stabilizing controller. 

     2 2u s F s y s                         (28) 

Such that  

1 1 1Ty u

                                      (29) 

The design objective is to find a robust 

controller  cF s  guaranteeing the 

closed-loop system with an H -norm 

bounded by a given positive number  , 

i.e. (Dingyu et al., 2007): 

1 1Ty u                                 (30) 

Then the controller can be represented 

by (Dingyu et al., 2007) 

 

 
0

f

c

A ZL
F s

F

 
  
  

                        (31) 

Where: 
2

1 1 2 2
T

fA A B B X B F ZLC          

2
TF B X                                   (33) 

2
TL YC                                    (34) 

 
1

2Z I YX


                           (35) 

X and Y are, respectively the solutions 

of the following two Algebraic Riccati 

Equations (AREs) (Dingyu et al., 2007): 

 2
1 1 2 2 1 1 0T T T TA X XA X B B B B X C C                  (36) 

 2
1 1 2 2 1 1 0T T T TAY YA Y C C C C Y B B            (37) 

The conditions for the existence of an 

H  controller are as follows (Dingyu et 

al., 2007):  

1) 11D  is small enough such that 

11D   

2) The solution X  of the 

controller ARE is positive-

definite; 

3) The solution Y of the observer 

ARE is positive-definite; 

4)   2
max XY  , which indicate 

that the eigenvalues of the 

product of the two Riccati 

equation solution matrices are 

all less than 2 . 

In the design of the optimal 

H controller, the optimal criterion is 

defined as (Dingyu et al., 2007): 

1 1

1
max Ty u
 

                              (38) 

3.4 H  Mixed Sensitivity Problem 

In the design of the H optimal control, 

using the mixed sensitivity problem, the 

weighting functions which are  1W s , 

 2W s  and  3W s  are used for shaping 

the plant model  G s . The weighting 

function  1W s , penalizes the error 

signal,  2W s  penalizes the input signal 

and  3W s  penalizes the output signal 

(Hossain, 2007). This is shown in Figure 

4. 

                          

 

 Figure 4. Mixed sensitivity problem 

 

The augmented plant model  P s  is 

written as: 

 

1 1

2

3

0

0

W W G

W
P s

W G

I G

 
 
 
 
 

  

                       (39) 

The linear fractional transformation 

(LFT) of the mixed sensitivity problem 

1 1Ty u , the sensitivity transfer function 
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 S s  and the complementary sensitivity 

transfer function  T s   are given as: 

1

1 1 2

3

W S

Ty u W FS

W T

 
 


 
  

                        (40) 

     
1

1S s F s G s


            (41) 

           
1

1 1T s S s F s G s F s G s


            (42) 

 F s  is the controller,  S s  is the 

sensitivity transfer function and  T s  is 

the complementary transfer function. 
 

3.5 Determination of  the 

H Controller 

The weighting functions  1W s ,  2W s  

and  3W s  for the control of the system 

were selected after extensive simulation 

and fine tuning as: 

 
 
 

2

1 2

100 1.5 12.64 18.49

100 1.5 103.2 18.49

s s
W s

s s

 


 
          (43) 

 2 1W s                                          (44) 

 
2

3
100

s
W s                                      (45) 

 

 

4. Simulation Results 

The following simulations results were obtained from MATLAB 2017a software. 

4.1 Inner Loop Design 

The step response of the actuator is shown in Figure 5. 

 

 

Figure 5. Step response of the actuator 

 
 

Table II: shows the Properties of the Actuator. 

System Response Value 

Settling Time (sec) 0.2989 

Overshoot (%) 4.5989 
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From Table II, the settling time of the 

actuator is 0.2989 seconds, which shows 

that the plate will settle before 0.4 

seconds that was set for it. However, the 

actuator  U s  due to a step input 

should not exceed the rated DC motor 

voltage of the actuator, which is 75V. 

Figure 6 shows the step response of the 

actuator with open parameters (rated 

power and voltage) of the DC motor. 

 

                        
Figure 6. Step response of the Actautor with open Parameters 

 

From Figure 6, the plate stabilized at 

0.3546 seconds. Also, the peak voltage 

is 74.56V, which is closer to the rated 

voltage of 75V. From this, it shows that 

a proper inner loop  design of the DC 

motor actuator has the following 

properties, which is given in Table III. 

 
Table III: Properties of the Actuator with open Parameters 

Actuator System 

Response 

Value 

Settling Time (sec) 0.3546 

Peak Voltage (V) 74.5631 

 

4.2 Outer Loop Design 

The designed H controller is: 

   

    

23622 s 1.631 s 0.2213 s 0.1794
K

s 1109 s 25.82 s 0.9012 s 0.3308

  


   
               (46) 

The step response of the H  controller is given in Figure 7 
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Figure 7. Step response of the H controller 

 

From Figure 7, the properties of the H controller is given in Table IV.  

 
Table IV.  Properties of the H-Infinity Controller 

 

H-infinity Controller 

System Response 

Value 

Settling Time (sec) 1.7087 

Overshoot (%) 7.7246 

 

From Table IV, it shows that the 

H controller stabilized the ball at 

1.7087 seconds, with an overshoot of 

7.7246 %. This shows a good indication 

of tracking the ball on the desired path 

on the plate. 

A circular trajectory of radius 0.4 m, 

and a sinusoidal reference signal with a 

reference input of  0.4 1 cosx t   

and  0.4 siny t  was taken into 

consideration, and was used to 

demonstrate the trajectory tracking 

performance of the ball. The angular 

frequency of the sinusoidal reference 

signal used was 1.57 rad/sec. This is 

shown in Figure 8. 

 

                              
                                Figure 8. Circular trajectory tracking using  controller 

 

      11 



The ball was allowed to track a circular 

trajectory at a frequency of 0.52 rad/sec 

at a complete revolution of 12 seconds. 

When the speed was increased to 0.9 

rad/sec, at a complete revolution of 7 

seconds, the trajectory tracking error 

increased. 

However, it was observed that using the  

controller, the steady state tracking error 

of the ball is 0.0095 m. Which shows 

that the ball was able to track the 

reference signal with a trajectory 

tracking error of 0.0095 m.  
 

5. Conclusion 

This paper presents the position and 

trajectory tracking control of the ball 

and plate system using the double 

feedback loop structure. For the 

effective control of the ball and plate 

system, the double feedback loop 

structure is considered. The inner loop 

was designed using linear algebraic 

method, while the outer loop was 

designed using   function. Simulation 

results shows that the controllers has 

adaptability, strong robustness and 

control performance for the ball and 

plate system. The ball was able to settle 

with a good settling time and overshoot. 

However future research work will be to 

consider other controller techniques for 

the design of the outer and inner loop, 

and incorporating artificial intelligent 

techniques like grasshopper 

optimization algorithm (GOA) and 

weighted artificial fish swarm algorithm 

(wAFSA) with the controllers for the 

ball tracking a desired trajectory 

optimally. 
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