
Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 2, No. 2, December, 2014. 
 

 

                                                                                                                      
 
 

Using Statistical Analysis of FLOSS Systems 

Complexity to Understand Software Inactivity 

Francielly Grigorio
1
,  

Daniel Miranda de Brito
2
, 

Eudisley Anjos
3
,  

Mario Zenha-Rela
4 

1
Centre for Informatics, Federal University of Paraíba, João Pessoa – PB, Brazil 

1
franciellygrigorio@gmail.com 

2
Centre for Informatics, Federal University of Paraíba, João Pessoa – PB, Brazil 

2
britmb@gmail.com 

3
CISUC, University of Coimbra, Coimbra, Portugal  

3
eudisley@ci.ufpb.br

 

4
CISUC, University of Coimbra, Coimbra, Portugal  

4
 mzrela@dei.uc.pt 

 

Abstract: Understanding how systems evolves can reveal important pieces of information that 

can help open source stakeholders to identify what can be improved in the software system’s 

internal organization. Once software complexity is one of the most important attributes to 

determine software maintainability, controlling its level in the system evolution process makes 

the software easier to maintain, reducing the maintainability costs. Otherwise, uncontrolled 

complexity makes the maintenance and enhancement process lengthy, more costly and 

sometimes it can contribute to the system abandonment. This work investigates the evolution of 

complexity in discontinued FLOSS projects, through statistical analysis with data obtained from 

analisis of SonarQube Software. SonarQube is an open-source software quality tool that 

analyzes the project’s source code and give the developers a feedback about the internal status of 

what is being developed. After several analyses, the outcome showed interesting results. A 

substantial portion of inactive FLOSS projects do not seem to be able to keep up with the extra 

work required to control the systems complexity, presenting a different behaviour of the 

successful active FLOSS projects. Though, some inactive FLOSS projects do have a complexity 

evolution that resembles with the curves belonging to active projects. 

              

Keywords: Software Complexity, FLOSS, software inactivity, open source success. 
 

I.  Introduction 
Although Free/Libre Open Source 

Software (FLOSS) projects has 

increasingly gained visibility among 

programmers in these past years, it is 

still a challenge for these kind of 

projects to manage to reach success 

and high quality systems 

1 



Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 2, No. 2, December, 2014. 
 

 

(Michlmayr, Hunt, & Probert, 2005). 

The lack of a rigid structure more 

present in proprietary software, 

sometimes may prejudice the 

prosecution of the system. The 

amount of discontinued projects is 

undoubtedly higher compared to the 

number of active projects. To 

illustrate this scenario, consider the 

data extracted in November, 2012, 

from SourceForge.net, one of the 

most popular Free Software 

repositories. Out of over 174,000 

hosted projects, 65% of them were 

classified as “dormant”, (no 

development within the last two 

years) while 28% were classified as 

“active”, and the 7% remainder were 

classified as “inactive” (its 

development was allegedly ceased 

by the lead developer) (Khondhu, 

Capiluppi, & Stol, 2013). 
 

Predict model projects in order to 

correctly foresee success or failure is 

still a significant challenge in 

software engineering (Beaver, Cui, 

Charles, & Potok, 2009). The 

evolution of these projects may 

occurs very quickly depending on 

programming effort from 

collaborators. 
 

According to Lehman’s second law 

of software evolution, system’s 

complexity increases unless work is 

done to maintain or reduce it. So, as 

the FLOSS systems grow in size and, 

consequently, features and 

capabilities, they will also grow in 

complexity if the level of required 

work is not reached (Capiluppi & 

Beecher, 2009). The deterioration of 

the integrity of the software, result of 

its continuous evolution, may 

manifest itself as growing 

complexity (Lehman, 1978). This 

phenomenon, called code decay in 

the literature, is likely to make it 

progressively more difficult to 

understand the inner workings of the 

software and, hence, to implement 

functional additions and changes 

(Eick, Graves, Karr, Marron, & 

Mockus, 2001). Thereby, it will be 

required increasing levels of work 

done to control complexity, in order 

to avoid system regression and to 

maintain their evolution (Capiluppi 

& Beecher, 2009).  
 

Given the great commitment 

necessary to keep a working and 

evolving FLOSS project, it is not 

unusual to find projects in which the 

lead developer(s) lost the interest on 

it. This was proven by the numbers 

of “discontinued” and “dormant” 

projects hosted by SourceForge.net 

repository shown previously. 

Occasionally, there are contributors 

willing to continue the development, 

but its complexity makes it more 

practical for them to start a new 

project as a replacement to the 

original (Terceiro & Chavez, 2009). 

Sometimes even the lead 

developer(s) realize that the code 

became so complex that it is more 

cost-effective to rewrite large parts 

of the software, or even to rewrite it 

entirely from scratch, than investing 

time in enhancing existing code 

(Terceiro & Chavez, 2009).  

  2 



Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 2, No. 2, December, 2014. 
 

 
 

During the initial research on the 

theme, we notice that some 

discontinued projects hosted by web-

based repositories, even when 

declared inactive by its developers 

(The inactive tag of SourceForge.net 

only can be setted by the 

development team) still hold a high 

download rate per week. That means 

that projects that no longer have 

updates in their systems and no 

maintenance whatsoever still manage 

to be successful. For instance, we 

can mention the ffdshow project 

(Ivanov et al., n.d.), that currently 

counts with about eighteen thousands 

of weekly downloads. Below in 

Table 1, you can see some 

discontinued projects hosted by 

SourceForge.net repository that have 

a high download rate per week. If 

these projects continue being that 

popular, what is reason why they are 

discontinued then? To better 

understand this question, it is 

important to consider not only the 

interest of the public that utilizes the 

software, but also the internal 

operation of the system. If the 

system reaches a point where it is 

difficult to make necessary changes 

that contribute to the system’s 

evolution, this can lead to its 

inactivation. In this case, the 

software development is ceased, but 

it is not necessarily discontinued. 

discontinued. The difference is that 

though the system cannot suffer 

further modifications, it is still 

running correctly so it can have a 

large number of page visits and high 

weekly downloads rate, as well as a 

wide range of users. Therefore, 

regardless external discriminators of 

success, what determines whether a 

project will continue to evolve or 

cease its development can be also 

related to the state of its internal 

structure. It is in the light of these 

questions, we propose to explore the 

source code complexity in order to 

acquire an overview about the 

internal behaviour of the system.

TABLE I: DISCONTINUED PROJECTS HOSTED ON SOURCEFORGE.NET 

WITH A HIGH WEEKLY DOWNLOAD RATE’ 

Project Weekly Downloads 

ffdshow 18,881 

VirtualDubMod 8,461 

Guliverkli2 4,763 

butt (broadcast using this tool) 1,088 

Python/XML  1,240 

In this paper, we approach the 

relation between discontinued  

FLOSS and complexity metrics. We 

think that complexity is one of the 

3 



Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 2, No. 2, December, 2014. 
 

 

most important attributes to be 

evaluated attributes to be evaluated 

in way to ensure an acceptable level 

of system maintenance. A project 

with an uncontrolled complexity can 

become difficult to maintain, and it 

can contribute to its abandonment. 

We think that understanding the 

complexity evolution for these 

software and the relation with its 

failure, it can guide us on how to 

avoid similar failures in software that 

are still under development. This 

paper is organised as follows: in 

Section II we show significant 

related work about FLOSS projects 

in order to situate the reader in the 

subject and relevance of this work. 

In Section III we state the research 

strategy containing the methodology 

we adopted to guide our work. In 

Section IV we presented the 

theoretical grounding to our 

statistical analysis. The results are 

presented in Section V, in Section VI 

we discuss future work, and we 

finalize the paper with the 

conclusions in Section VI.  

 

II. Related Work 

The categorization of OSS projects 

has been the target of an extensive 

number of studies, such in 

(Capiluppi, Lago, & Morisio, 2003), 

(English & Schweik, 2007), where is 

established that a considerable 

number of OSS projects tend to be 

discontinued, suffering the 

“abandonment tragedy” (English & 

Schweik, 2007).   

A study conducted by (Beecher et 

al., n.d.), investigates whether the 

inclusion of a specific project in the 

same forge and distribution of a 

successful FLOSS project has an 

influence on its evolutionary 

characteristics. For the analysis, they 

sampled 50 projects from both 

forges: Debian and Source-Forge, 

and studied their evolution. They 

concluded that Debian projects do 

indeed show different characteristics 

than projects from SourceForge. 

Debian projects were shown to have 

a longer period of evolution, were 

larger in size, attracted more 

developers and experienced greater 

activity than SourceForge projects. 

Their second research question was 

based on the Debian sample only and 

assessed the presence of two phases 

of evolution, i.e. before and after the 

inclusion into the Debian forge. 

However, their results were 

ineficient to conclude that there was 

a statistically significant difference 

before and after the inclusion. 
 

Using a sample set of 83 projects 

hosted on Source-Forge.net that had 

at least 7 developers that have ever 

contributed code and had at least 100 

bugs reported, (Wang, 2005) 

concluded that the success of an OSS 

project can be predicted by just 

considering its first 9 month 

development data with his K-Means 

clustering predictor at relatively high 

confidence. k-means clustering is a 

machine learning algorithm used to 

cluster observations into groups of 

related observations without any

 4 



Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 2, No. 2, December, 2014. 
 

 

prior knowledge of those 

relationships. 
 

Contrary to the idea of most existing 

studies on the maintainability of OSS 

projects, which shows that evolving 

software tends to decrease its quality 

and maintainability (Bakota et al., 

2012), through our research of 

related work we found that this is not 

necessarily true, as stated in 

(Khondhu et al., 2013). 
 

In their paper, (Stamelos, Angelis, 

Oikonomou, & Bleris, 2002) show 

empirical results on the relationship 

between the size of application 

components and the delivered quality 

measured through user satisfaction. 

Quality characteristics of 100 

applications written in C for 

GNU/Linux were compared to 

industrial standards. They limited 

their analysis to the component level 

– a component is any C function in 

the program. They have determined 

that, up to a certain extent, the 

average component size of an 

application is negatively related to 

the user satisfaction for this 

application. Their findings relating 

structural quality to user satisfaction 

reflects the connection between 

internal structure and the application 

acceptability by the user, what may 

contribute to determine whether an 

OSS project will become successful 

or not. In (Schweik, English, 

Paienjton, & Haire, 2010), the 

authors investigated what factors 

lead to success or abandonment of 

open source software (OSS) projects. 

As mentioned in their paper, the 

most important external 

discriminators of success and 

abandonment in the growth stage of 

development process are the quantity 

of page visits and the download rate. 

However, it is not clear which 

factors in the source code structure 

affects these number.  
 

III. Research Design  
 

A. Research Strategy  

Our research strategy is based on the 

Goal-Question- Metric (GQM) 

approach (Basili, Caldiera, & 

Rombach, 1994). According to this 

strategy, we must first specify our 

goals, then we must delineate those 

goals to the data that are designated 

to define those goals operationally, 

and finally provide a underlying 

structure for interpreting the data 

with respect to the stated goals. The 

GQM approach is a mechanism for 

defining and interpreting operational 

and measurable software. It can be 

used in isolation or, better, within a 

context of a more general approach 

to software quality improvement. 

The following are the objectives and 

questions that make up the strategy 

in this paper.  

 – Goal. The overall goal of this 

paper consists in study the relation 

between source code complexity 

metrics and the success of FLOSS 

projects, as well as investigate how 

further this relation can affect the 

system’s survival. Once it is clear 

that we cannot directly point out the 

cause of the software’s 

5 



Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 2, No. 2, December, 2014. 
 

 

abandonment, we propose to explore 

the internal factors that may 

contribute to the project failure.  

 – Questions. This paper addresses 

the following research question:  

1) How the internal 

properties of the software influence 

the abandonment of a project? 

 2) In which point of 

development process discontinued 

FLOSS projects tend to fail?  

 – Metrics and Definitions. In order 

to analyse the OSS, we used the 

following metrics and definitions:  

– Lines of Code (LoC): Number of 

physical lines that contain at least 

one character which is neither a 

whitespace or a tabulation or part of 

a comment. 

– Complexity: It is the cyclomatic 

complexity, also known as 

McCabe’s complexity metric. 

Whenever the control flow of a 

function splits, the complexity 

counter gets incremented by one. 

Each function has a minimum 

complexity of 1. 

 – Complexity/class: Average 

complexity by class.  

 – Complexity/file: Average 

complexity by file.  

 – Complexity/function: Average 

complexity by function.   

– Normalized Complexity: 
Outcome value of dividing the total 

complexity of each system version 

by its size (source code number of 

lines) of that same version.  

 

B. Data Collection and Analysis  

In this subsection we specify how the 

data collection and the analysis of 

the data obtained was performed. 

SonarQube Software: Firstly, aiming 

to pick a source code quality 

measurement tool that matched with 

our needs to fulfil the goals proposed 

at the beginning of this study, we 

have chosen to use the SonarQube 

software. SonarQube is an open 

source software that aims to be the 

source code’s quality management 

platform, allowing control over a 

large number of software metrics by 

the development team. The software 

main goal is to identify how the code 

is evolving, as well the behaviour of 

the multiple quality measures, while 

pointing possible software bugs.  

 

Figure. 1: Integration of SonarQube: How the software works.

     6 



Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 2, No. 2, December, 2014. 
 

 

When a SonarQube analysis is 

performed, the outcome is generated 

automatically through a complete 

inspection on the code base, after 

which the results are displayed 

through the web interface displayed 

in graphics and dashboards.

 

Figure. 2: SonarQube Web Interface.

Bellow, we detail the steps taken to 

perform this empirical study. 

1) Sampling of projects. In way to 

find the software to fit in our 

strategy, we performed a research 

through the SourceForge.net 

repository. The results were filtered 

to show projects only written in Java, 

so they were ordered using two tags: 

inactive and rating. We chose the 

Java language because it is a widely 

used object-oriented programming 

language. Moreover, the rating was 

important to check how relevant the 

software among the discontinued 

ones was. Once that projects had a 

high value of rating, most of them 

had a high download rate per week. 

Then, we manually selected ten 

projects with more than five released 

versions to proceed with analysis. 

We checked the last update date to 

include only projects that were 

inactive for more than two years. 

Afterwards, we selected three 

successful and active FLOSS 

projects. They were used to compare 

with the unsuccessful ones. Two out 

of them, are well-known systems 

(Tomcat and Hibernate), and the 

third one, JabRef, is a smaller 

software, but still very popular. We 

chose them based on the availability 

and good organization of the source 

code (what simplifies the analysis).  

2) Extracting data. The source code 

of the selected projects was manually 

extracted from the respective 

projects’ web-pages on 

SourceForge.net repository. All 

released versions available were 

downloaded.  

3) Analysing the source code. As 

stated before, we used the 

SonarQube tool to execute the 

analysis. A Python script was written 

7 



Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 2, No. 2, December, 2014. 
 

 

to automatize the analysis via 

terminal. Once the analysis is 

performed, the results are available 

in the web interface, and count with 

the extraction of almost twenty 

metrics analysed. Within the range of 

metrics generated by the analysis, we 

adopted six metrics to proceed with 

our research. The metrics we chose 

to proceed within this work are 

presented in the previous subsection. 

4) Evaluating the results. The final 

step is the evaluation process. The 

results are obtained through the 

execution of SonarQube and data 

analysis.  
 

The following table (Table 2) shows 

information from the ten 

discontinued FLOSS projects 

analysed. As we can observe, all of 

the samples has at least two years of 

inactivity, what assures that the 

projects are discontinued in fact. 

They also present a significant 

number of downloads per project, 

which shows on the other hand that 

all of them had some relevance in the 

Open Source Software scenario.

 

TABLE II: DATA OF SELECTED DISCONTINUED PROJECTS. 

Project ID First Version 

(dd-mm-yyyy) 

Last Version 

(dd-mm-yyy) 

Released 

versions 

Number of 

downloads 

Saxpath 24-01-2001   26-04-2002 7 21,759 

Jaxen 25-07-2001 26-04-2002 10 43,682 

Jo1 18-03-2002 07-07-2005 9 23,502 

IdeaVIM 17-04-2003 30-03-2010 53 9,568 

RemoteTea 14-08-2003 02-01-2008 5 15,474 

JRFD 20-12-2003 09-02-2011 26 18,172 

G4J 16-09-2004 19-09-2005 11 45,158 

Gilead 10-11-2008 22-05-2010 7 28,791 

LslPlus 28-07-2008 06-03-2009 14 20,220 

MorarChat 21-12-2009 14-01-2012 15  19,535 

 

IV. Statistical Analysis 
 

A. Correlation 

In order to determine how the 

complexity metrics are correlated, 

we started to seek for some 

correlation coefficient that could 

measure this connexion. Correlation 

coefficient is a measure of 

association between two variables, 

and it ranges between 1 and 1. If the 

two variables are in perfect linear 

relationship, the correlation 

coefficient will be either 1 (total 

positive correlation) or 1 (total 

negative correlation). The correlation 

coefficient is 0 if there is no linear 

relationship between the variables. 

Two different types of correlation 

   8 



Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 2, No. 2, December, 2014. 
 

 

coefficients are in use. One is called 

the Pearson product-moment 

correlation coefficient, and the other 

is called the Spearman rank 

correlation coefficient, which is 

based on the rank relationship 

between variables (“Encyclopaedia 

of Measurement and Statistics”, 

2007). 
 

The Pearson product-moment 

correlation coefficient (sometimes 

referred to as the PPMCC or PCC 

or Pearson’s r) is more widely used 

in measuring the association between 

two variables. Given paired 

measurements (X1; Y1); (X2; Y2); (Xn; 

Yn), the Pearson product-moment 

correlation coefficient is a measure 

of association given by 

 

 
 

Where X  and Y   are the simple 

mean of X1; X2; ... Xn and Y1; Y2; ... 

Yn, respectively. 
 

Bellow you can find examples of 

scatter diagrams with different 

values of Pearson’s correlation 

coefficient. 

 

Fig. 3: Data lie on a perfect straight line with 

a negative slope 

 

Fig. 4: No linear relationship between the 

variables. 

 

Fig. 5: Data lie on a perfect straight line with 

a positive slope. 

 

B. R Programming To Calculate 

Correlation 

R is an open-source (GPL) statistical 

environment, started by Robert 

Gentleman and Ross Ihaka (hence 

the name, R) of the Statistics 

Department of the University of 

Auckland in 1995. R is a powerful 

statistical program but it is first and 

 9 



Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 2, No. 2, December, 2014. 
 

 

foremost a programming language. R 

provides a wide variety of statistical 

and graphical techniques, including 

linear and nonlinear modelling, 

classical statistical tests, time-series 

analysis, classification, clustering, 

and others. R is easily extensible 

through functions and extensions, 

and, besides, routines have been 

written for R by people all over the 

world and mad freely available from 

the R project website as “packages”. 
 

R can perform correlation with the 

cor() function. Built-in to the base 

distribution of the program are three 

routines: for Pearson, Kendal and 

Spearman Rank correlations. The 

detailed steps undertaken are the 

following: 

1) The first step is to arrange your 

data in a .CSV file. Use a column for 

each variable and give it a 

meaningful name. Don’t forget that 

variable names in R can contain 

letters and numbers but the only 

punctuation allowed is a period. In 

our case, we arranged the data in a 

readable formatation, so we could 

copy the data into a .CSV file. 

2) The second step is to read your 

data file into memory and give it a 

sensible name. 

3) The next step is to attach your 

data set so that the individual 

variables are read into memory. 

4) Finally, to get the correlation 

coefficient you type: cor( var1, var2, 

method =  “method”) 

The default method is “pearson” so 

you may omit this if that is what you 

want. If you type “kendall” or 

“spearman” then you will get the 

appropriate correlation coefficient. 

 

V. Results 
Subsection IV.A shows the 

evaluation of the outcome obtained 

by performed analyse detailed in 

Subsection III.B. As described in 

Section III, we defined our goal that 

is addressed by the research 

questions. Subsections IV.B discuss 

questions 1 and 2. Subsection IV.C 

explain the exception in the results 

pattern. 

A. Evaluating analysis outcome 

Given the results of the analysis 

made with SonarQube, we began to 

interpret some of the data obtained. 

The data collected allows us to 

affirm that the projects are 

consistently growing since their first 

release. Delimiting the number of 

released versions served to not select 

small projects that are locally 

developed for a certain public. Thus, 

the selected projects were being 

actively developed and receiving 

new features as an effect of new user 

requirements. 
 

In order to make a more complete 

analysis of the systems’ metrics and 

compare them to each other, we 

made some normalizations. Thereby, 

we calculated the complexity ratio 

by dividing the total complexity of 

each system version by its size 

(source code number of lines) of that 

same version. We called it 

“normalized complexity”.  

   10 



Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 2, No. 2, December, 2014. 
 

 

As we can observe through the 

statistics, shown by Fig. 1, 3, 5, 6, 7 

and 9, six out of ten projects 

analysed have a resembling 

behaviour. These six projects (Jaxen, 

IdeaVIM, JRFD, G4J, Gilead and 

MorarChat), show a gradual (Fig. 1, 

3, 6 and 7) or uncontrolled (Fig. 5 

and 9) rise in their normalized 

complexity, which tends to remain 

for the upcoming versions. 

Comparing them with the graphics 

that shows the normalized 

complexity of active applications 

(Fig. 11), we can point out the 

differences. While the active projects 

has a more controlled complexity, 

presenting almost a constant 

normalized complexity, with small 

decreases on its value, the 

discontinued projects do not seem to 

be able to control the system’s 

complexity, since its complexity is 

gradually increasing or sometimes it 

is even widely varying. In the other 

hand, Fig. 2, 4, 8 and 10 shows that 

the normalized complexity metric is 

kept almost constant for these 

projects. This demonstrate that these 

inactive projects (Jo!, RemoteTea, 

Saxpath and LslPlus) have a very 

similar behaviour to the active ones. 

B. Addressing paper questions  

Question 1.“How the internal 

properties of the software influence 

the abandonment of a project?”  

The complexity data reveals 

interesting issues. As verified in the 

previous subsection, on six out of ten 

inactive projects analysed the 

complexity grows as the time passes, 

according as the discontinued 

projects evolve. Also, the curve 

drawn by the complexity sometimes 

may shows a lot of variations. 

Therefore, the increasing complexity 

of these projects enables us to assert 

that these projects can not 

completely control the complexity as 

faster as it grows. The level of work 

needed to keep the control over the 

complexity seems not to be reached 

by the developers, and this could 

also contribute to the abandonment 

of these projects.  
 

In order to further investigate the 

relationship between the complexity 

of a project and its abandonment, we 

calculate de standard deviation of the 

complexity metrics. The standard 

deviation measures how close the set 

of data is to the mean value of the 

data set. If the data set have a high 

standard deviation then the values 

are spread out very much. If the data 

set have a small standard deviation 

then the data points are very close to 

the mean. The following graphs 

(figure 12 and 13) shows that 

discontinued projects have a larger 

standard deviation than the active 

ones, when it comes to its 

normalized complexity, indicating 

that active projects could possibly 

have a more effective control over its 

complexity. However, it is 

mandatory to notice that not all of 

the inactive projects presents the 

same behaviour. Fig. 12 ratifies what 

we observed previously about 

  11 



Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 2, No. 2, December, 2014. 
 

 

similarities etween inactive and 

active projects. According to Fig. 12, 

Jo!, RemoteTea, Saxpath and LslPlus 

projects, shows indeed a low 

standard deviation, indicating that 

these projects kept the normalized 

complexity under control.  

 

 

  

Fig. 6: Normalized Complexity of each version of Jaxen Application. 

 

 Fig. 7: Normalized Complexity of each version of Jo! Application 

 

12 



Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 2, No. 2, December, 2014. 
 

 

  

Fig. 8: Normalized Complexity of each version of Jaxen Application. 

  

Fig. 9: Normalized Complexity of each version of Jaxen Application. 

 

Moreover, observing the graphs 

we also identified that the 

complexity/function metric has a 

higher impact in the systems’ 

evolution among the other 

complexity related metrics also 

analysed. We calculate the standard 

deviation as well as the variance of 

this metric. The variance measures 

how far a set of numbers is spread 

out. A variance of zero indicates that 

all the values are identical. 

Therefore, a small variance means 

that the variable has its numbers not 

so spread out, thus the similar values 

indicates constancy in the metric. We 

found out that both standard 

deviation and variance is larger for 

discontinued projects as well (Fig. 

14, 15, 16 and 17), what lead us to 

conclude that in some projects the 

complexity may have a connection 

with its failure, especially when we 

focus in its complexity by function.  

 13 



Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 2, No. 2, December, 2014. 
 

 

Question 2. “In which point of 

development process discontinued 

FLOSS projects tend to fail?” 

As seen in Section I, there are a lot 

of projects hosted by web-based 

repositories that became so complex 

that it is more cost-effective to 

rewrite large parts of its source code. 

When an application reaches this 

apex of complexity, we can declare it 

a failed project. Therefore, this 

“failure point” – considering only the 

structural motivations – it is when 

the complexity makes the system no 

longer maintainable and then the 

project becomes discontinued.  
 

However, as we can notice from the 

charts, the structural elements of 

software do not determine precisely 

when a project must be discontinued. 

Taking in account Fig. 5, which 

shows the behaviour of the 

normalized complexity of JRFD 

project, we can see that in the sixth 

released version of the software 

occurs a peak on the value of its 

normalized complexity, but this 

factor is clearly not sufficient to 

immediately cease its development. 

That lead us to conclude that, though 

the complexity may have a 

contribution on the discontinuation 

of a project, the point of 

development process that a project 

tend to fail is a complex question 

that involves way more external 

aspects rather than a limited subset 

of factors dictated by internal 

properties.

 

  

Fig. 10: Normalized Complexity of each version of Jaxen Application. 

 14 



Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 2, No. 2, December, 2014. 
 

 

  

Fig. 11: Normalized Complexity of each version of G4J Application 

  

Fig. 12: Normalized Complexity of each version of IdeaVIM Application. 

  

Fig. 13: Normalized Complexity of each version of RemoteTea Application 

 

  15 



Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 2, No. 2, December, 2014. 
 

 

  

Fig. 14: Normalized Complexity of each version of MorarChat Application. 

  

Fig. 15: Normalized Complexity of each version of LslPlus Application 

 

Fig. 16: Released versions Normalized Complexity of Actives FLOSS 

projects: Tomcat, JabRef and Hibernate Applications. 

  16 



Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 2, No. 2, December, 2014. 
 

 

 

Fig. 17: Normalized Complexity standard deviation of discontinued FLOSS 

projects. 

 

C. Correlation between complexity 

metrics 

As we can see from the figures 

bellow, which show the Pearson’s 

coefficient of the complexity metrics 

from the projects analysed, we can 

notice that the projects present 

different correlations for the same 

pairs of metrics analysed. For 

instance, the correlation between the 

LoC x Complexity by function 

metric is strongly positive for Jaxen 

application, but it is strongly 

negative for RemoteTea application 

and even non existent for Jo! 

application. Therefore, for each 

project, its class, function or file 

characteristics, has a stronger 

correlation with the other metrics, 

indicating that this particular metric 

has a greater impact over the 

characteristics of the project as a 

whole. What could determine which 

of them – the class, the function or 

the file – exerts this role, is the 

definition of its architecture and its 

definition of module. Once there is 

not a formal definition of a module, 

and what a module is in the context 

of a project, it largely depends on the 

nature and design of the project. So, 

this distribution of correlation may 

has to do of how the development 

team see the set of modules that 

compose the source code, and how 

they implement the additions and 

modifications in this software. 
 

In order to have a clearer view of 

what metrics have deeper relation 

with the Complexity metric, we 

construct the table below. Take x for 

positive correlation with th 

Complexity metric and �x for 

negative correlation.

 

  17 



Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 2, No. 2, December, 2014. 
 

 

 

Fig. 18: Normalized Complexity standard deviation of actives FLOSS projects. 

 

Fig. 19: Pearson’s correlation coefficient of Jaxen Application. 

 

Fig. 20: Pearson’s correlation coefficient of Jaxen Application. 

 

 
Fig. 21: Pearson’s correlation coefficient of Jaxen Application. 

  18 



Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 2, No. 2, December, 2014. 
 

 
 

 
Fig. 22: Pearson’s correlation coefficient of Jaxen Application 

 

 
Fig. 23 Pearson’s correlation coefficient of Jaxen Application 

 

 
Fig. 24 Pearson’s correlation coefficient of Jaxen Application 

 

 
Fig. 25 Pearson’s correlation coefficient of Jaxen Application 

 

19 



Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 2, No. 2, December, 2014. 
 

 

 
Fig. 26 Pearson’s correlation coefficient of Jaxen Application 

 

 
Fig. 27: Pearson’s correlation coefficient of MorarChat Application. 

 

 
Fig. 28: Pearson’s correlation coefficient of LslPlus Application. 

 

D. Detailed Analysis of Behaviours 

Though we collected a small sample 

of projects, the outcome provided 

was very diversified, once the 

projects presented a very divergent 

behaviour from each other. The main 

difference is that the output of four 

out of the ten projects analysed (Jo!, 

RemoteTea, Saxpath and LslPlus 

projects) hold constant values for the 

studied complexity metrics. Thereby, 

we decided to further investigate 

these detached projects in order to 

verify what could have lead them to 

this result. Our aim was to answer 

the question: If the project has a 

   20 



Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 2, No. 2, December, 2014. 
 

 

controlled complexity why did it 

become discontinued? 
 

Accessing Saxpath webpage on 

SourceForge.net we found out that 

the project was not discontinued. In 

fact, it had the inactive tag because it 

had been incorporated into another 

software. In other words, the project 

did not show any signs of 

uncontrolled complexity and it was 

active indeed. Also, when accesing 

RemoteTea webpage on 

SourceForge.net we noticed that the 

inactive tag was gone, indicating that 

the project could be reactivated any 

time by its development team. That 

is, the project was not totally 

abandoned (even it did not receive 

any released version in the last six 

years). However, in the case of Jo! 

and LslPlus projects when accessing 

the respective webpages on 

SourceForge.net, we did not find any 

sign of activation by their 

development team. Posteriorly, we 

investigate the current state of the 

remaining six projects that had 

increasingly complexity. Through an 

inspection in their website, we found 

out that all of them, with the 

exception of IdeaVim project, 

remained inactive. 

 

TABLE III: DISCONTINUED PROJECTS HOSTED ON 

SOURCEFORGE.NET HIGH WEEKLY DOWNLOAD RATE 

Project ID First Version 

(dd-mm-yyyy) 

Last Version 

(dd-mm-yyy) 

Released 

versions 

Number of 

downloads 

Saxpath 24-01-2001   26-04-2002 7 21,759 

Jaxen 25-07-2001 26-04-2002 10 43,682 

Jo1 18-03-2002 07-07-2005 9 23,502 

IdeaVIM 17-04-2003 30-03-2010 53 9,568 

RemoteTea 14-08-2003 02-01-2008 5 15,474 

JRFD 20-12-2003 09-02-2011 26 18,172 

G4J 16-09-2004 19-09-2005 11 45,158 

Gilead 10-11-2008 22-05-2010 7 28,791 

LslPlus 28-07-2008 06-03-2009 14 20,220 

MorarChat 21-12-2009 14-01-2012 15  19,535 

IdeaVim project is the only one that 

presents growth on its complexity 

only until the 4th version, and then 

have the metric under control, with 

small variations. Apart from that 

peak, its behaviour is more similar to 

an active project, once its complexity 

is very controlled as the application 

evolves. Thus, excluding the first 4 

released versions, the remaining 39 

versions had its complexity 

controlled, what shows that 

 21 



Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 2, No. 2, December, 2014. 
 

 

development team keep up with the 

work at the level required by the 

software growth. Accessing their 

webpage on SourceForge.net, we 

found out that they left a note to 

users, informing that the project was 

discontinued because Jetbrains Fig. 

17: Normalized Complexity standard 

deviation of discontinued FLOSS 

projects. took over the IdeamVIM 

plugin several years ago, and that 

any support should be directed to the 

company. Jetbrains is a software 

development company whose tools 

are targeted towards software 

developers and project managers 

(Hunger, 2010). The company lists 

75,000 customers worldwide, among 

them Apple, LinkedIn, Siemens, and 

Bank of America.

 

 

Fig. 29: Complexity by function standard deviation of discontinued s FLOSS projects. 

 
Fig. 30: Complexity by function standard deviation of actives FLOSS projects. 

 
 

 

 

 

22 



Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 2, No. 2, December, 2014. 
 

 

Therefore, it is suitable state that 

internal properties of the software 

can not be used to precisely 

determine whether a project will be 

abandoned or not, but it can provide 

an understanding about what could 

have contributed to software failure. 

In the case of complexity, we could 

notice that there is a relation between 

uncontrolled complexity and 

software abandonment. Thus, it is 

important that an analysis over 

external factors of the software be 

performed to explore another reasons 

that could influence the software 

abandonment. For instance, a study 

about social impact on software 

architecture, as we did in a previous 

work (Siebra, Anjos, & Rolim, 

2014), also helps the developers to 

identify elements that commits the 

software evolution. 

 

 

Fig. 29: Complexity by function standard deviation of discontinued s FLOSS projects. 

 

VI. Future Work 

This work has limitations that 

motivates future works. Firstly, the 

study should be replicated with a 

larger number of projects samples. 

The samples used in our work were 

restricted only to projects written in 

Java and hosted by SourceForge.net 

repository. The study would become 

more complete if it include projects 

written in other languages, such as C 

language, once a considerable 

number of FLOSS projects are 

written in this language. Also, future 

works could have projects hosted by 

other repositories, such as GitHub 

and Google Code. Moreover, we 

recognize that there are a lot of other 

metrics besides the ones we used in 

this study, that could help in 

exploring the FLOSS abandonment 

phenomenon. Additional 

investigation is necessary, in order to 

discover others variables that may 

influence the software failure.  

 23   



Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 2, No. 2, December, 2014. 
 

 

Also, a more detailed analysis needs 

to be performed, in order to find 

correlation between another 

complexity metrics in order to 

confirm the relation of complexity 

and software inactivity. In future 

works, it could be used complex 

maintainability models instead of 

only simple complexity metrics, 

utilizing practical tools for 

measuring maintainability like 

SQALE, SIG, ColumbusQM and 

Quamoco. 

 

 
Fig. 32: Complexity by function variance of actives FLOSS projects. 

 

Furthermore, it is import to point out 

that the results of our work could be 

also valid for every kind of project, 

once private systems are even more 

complex and cohesive than FLOSS 

(Maccormack et al., 2008). In order 

to confirm this assumption, future 

work in this theme is required. 

Moreover, a further investigation 

whether the projects analyzed could 

have evolved to other versions and 

given origin to successful projects, it 

would be also a worth future work as 

well. 
 

Finally, this work has shown another 

direction for future work. We believe 

that one work that seems to be 

relevant is to understand if there is a 

way to classify if a project is doomed 

to failure. The failure could be based 

on known projects that would be 

used to train a classification 

mechanism, like a Neural Network. 

Studies have shown that we can learn 

with successful projects, but we 

always forget to learn with projects 

that have failed. 
 

VII. Conclusion 

This paper presents a study of 

discontinued FLOSS projects 

complexity. By sampling projects 

hosted at SourceForge.net, tagged as 

“inactive”, it was investigated 

whether there is a relation between 

the metrics used to analyse FLOSS 

projects complexity, and the 

  24 



Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 2, No. 2, December, 2014. 
 

 

abandonment of them. Though 

several tests performed in this work, 

we found interesting results that 

confirmed some of this relationships. 

The majority of the discontinued 

FLOSS projects we have analysed 

(60%), showed a substantial 

complexity grow since its first 

release compared to its last one. 

While the active projects revealed a 

more controlled complexity, 

presenting almost a constant 

normalized complexity, some 

discontinued FLOSS do not seem to 

be able to control the system 

complexity. The inability to handle 

the extra work needed to control the 

system complexity seems to 

contribute to the failure of the 

system, as predicted by Lehman’s 

law of software evolution mentioned 

earlier. One possible explanation of 

these failures is the use of anti-

patterns, that are responses to 

recurrent problems that should not be 

done, because they can jeopardise 

the projects’ evolution and control. 

We also observed that the 

complexity by function metric seems 

to have a stronger relationship with 

the abandonment of the projects, 

since it is the metric that shows a 

larger standard deviation for 

discontinued projects than the active 

ones. 
 

Besides, we found some projects 

(40%) that exhibited a different 

behaviour, having its complexity’s 

curve more similar to the curve of 

active projects. A detailed search 

showed that two out of these four 

projects was actually still under 

development. 
 

Through a statistical analysis of the 

data extracted with SonarQube, we 

calculated the Pearson’s coefficient 

of correlation between the 

complexity metrics and we found 

that the projects have variants 

behaviours. Some projects, as Jaxen 

Project and IdeaVim project present 

strong correlation between all the 

diverse complexities (class, file and 

function) and the total complexity. 

Some of them, as Jo! and Gilead, 

present a really weak correlation 

between all of the three variations 

and the total complexity. Based on 

this fact, we decided to investigate it 

further, and then started to 

investigate what have happened to 

each project separately. 
 

Despite the fact that the IdeaVim 

project presents an increasingly 

growth on its complexity until its 4th 

released version, later its 

development team managed to keep 

the complexity under control. 

Accessing its website we found out 

that it was incorporated into another 

software. 
 

These results lead us to conclude that 

although the complexity may 

contribute to the software 

abandonment, once an uncontrolled 

complexity demands a higher level 

of work from contributors, it requires 

more extra information about the 

project to guide improvement 

25 



Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 2, No. 2, December, 2014. 
 

 

decisions related to its activity. 

Therefore, it is mandatory to also 

evaluate external elements that may 

interfere in the software evolution. 
 

We believe that the results of this 

study can be helpful for FLOSS 

projects practitioners, since they can 

find an explanation of abandonment 

of collaborators. We also believe that 

this work can be considered as a base 

for future works in the area of 

FLOSS projects, specifically in the 

area of discontinued projects, which 

still needs further investigation

References 

Bakota, T., Hegedus, P., Ladanyi, G., 

Kortvelyesi, P., Ferenc, R., & 

Gyimothy, T. (2012). A cost 

model based on software 

maintainability. In Icsm (p. 

316-325). IEEE Computer 

Society. Retrieved from 

http://dblp.uni-trier.de/db/conf/ 

icsm/icsm2012.htmlBakotaHK

FG12 

Basili, V. R., Caldiera, G., & 

Rombach, H. D. (1994). The 

goal question metric approach. 

In Encyclopedia of software 

engineering. Wiley. 

Beaver, J. M., Cui, X., Charles, J. S., 

& Potok, T. E. (2009). 

Modeling success in floss 

project groups. In T. J. Ostrand 

(Ed.), Promise (p. 16). ACM. 

Retrieved from http://dblp.uni-

trier.de/db/conf/promise/promis

e2009.htmlBeaverCCP09 

Beecher, K., Boldyreff, C., Rank, S., 

Beecher, K., Boldyreff, C., & 

Rank, S. (n.d.). Evolutionary 

success of open source 

software: An investigation into 

exogenous drivers. Electronic 

Communications of the EASST, 

2008. 

Capiluppi, A., & Beecher, K. (2009). 

Structural complexity and 

decay in floss systems: An 

inter-repository study. In A. 

Winter, R. Ferenc, & J. Knodel 

(Eds.), Csmr (p. 169-178). 

IEEE. Retrieved from 

http://dblp.uni-

trier.de/db/conf/csmr/csmr2009

.htmlCapiluppiB09 

Capiluppi, A., Lago, P., & Morisio, 

M. (2003). Characteristics of 

open source projects. In 

European conference on 

software maintenance and 

reengineering. 

Eick, S. G., Graves, T. L., Karr, A. 

F., Marron, J. S., & Mockus, A. 

(2001, January). Does code 

decay? assessing the evidence 

from change management data. 

IEEE Trans. Softw. Eng., 27(1), 

1–12. Retrieved from 

http://dx.doi.org/10.1109/32.89

5984 doi: 10.1109/32.895984 

Encyclopedia of measurement and 

statistics. (2007). In N. J. 

Salkind (Ed.), Encyclopedia of 

measurement and statistics 

(??th ed.). SAGE Publications, 

 26 



Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 2, No. 2, December, 2014. 
 

 

Inc. Retrieved from 

http://dx.doi.org/10.4135/9781

412952644 doi: 

http://dx.doi.org/10.4135/9781

412952644 

English, R., & Schweik, C. M. 

(2007). Identifying success and 

tragedy of floss commons: A 

preliminary classification of 

sourceforge.net projects. In 

Proceedings of the 29th 

international conference on 

software engineering 

workshops. ICSEW ’07. 

Hunger, M. (2010). Jetbrains 

developer tools. In infoq. 

Ivanov, A., Andy2222, Bergholm, 

D., Rosbach, H. K., 

Krakow, K., & Barry, T. (n.d.). 

Ffdshow. 

http://sourceforge.net/p/ffdsho

w. 

Khondhu, J., Capiluppi, A., & Stol, 

K. (2013). Is it all lost? A study 

of inactive open source 

projects. In Proceedings of the 

9th international conference on 

open source systems. 

Lehman, M. M. (1978). Programs 

cities, students, limits to 

growth? Programming 

Methodology, 42-62.  

Maccormack, A., Rusnak, J., 

Baldwin, C. Y., Maccormack, 

C. A., Rusnak, J., & Baldwin, 

C. Y. (2008). Exploring the 

duality between product and 

organizational architectures: A 

test of the mirroring 

hypothesis, working paper 08-

039.  

Michlmayr, M., Hunt, F., & Probert, 

D. (2005). Quality practices 

and problems in free software 

projects. In M. Scotto & G. 

Succi (Eds.), Proceedings of 

the first international 

conference on open source 

systems (p. 24-28). Genova, 

Italy. 

Schweik, C. M., English, R., 

Paienjton, Q., & Haire, S. 

(2010,05/2010). Success and 

abandonment in open source 

commons: Selected findings 

from an empirical study of 

sourceforge.net projects. In 

Second international workshop 

on building sustainable open 

source communities (oscomm 

2010). 

Siebra, B., Anjos, E., & Rolim, G. 

(2014). Study on the social 

impact on software architecture 

through metrics of modularity. 

ICCSA (5), 618-632. 

Stamelos, I., Angelis, L., 

Oikonomou, A., & Bleris, G. L. 

(2002). Code quality analysis 

in open source software 

development. In Information 

systems journal (Vol. 12, pp. 

43–60).  

Terceiro, A., & Chavez, C. (2009). 

Structural complexity evolution 

in free software projects: A 

case study. In M. Ali Babar, B. 

Lundell, & F. van der Linden 

  27 



Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 2, No. 2, December, 2014. 
 

 

(Eds.), Qacos-osspl 2009: 

Proceedings of the joint 

workshop on quality and 

architectural concerns in open 

source software (qacos) and 

open source software and 

product lines (osspl). 

Wang, Y. (2005). Prediction of 

success in open source 

software development. 

University of California, Davis. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

28 


