
Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 2, December, 2013.

Creative Thinking in eXtreme Programming

Broderick Crawford
1

,

Claudio León de la Barra
2
,

Ricardo Soto
 3

,

Sanjay Misra
4
,

Eric Monfroy
5

1
 Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile

2
 Universidad Finis Terrae, Santiago, Chile

3
Universidad Autónoma de Chile, Santiago, Chile

4
Covenant University, Nigeria

5
LINA, Université de Nantes, France

Contact(s). Broderick.Crawford@ucv.cl, Claudio.LeondelaBarra@ucv.cl,

Ricardo.Soto@ucv.cl, Sanjay.Misra@covenantuniversity.edu.ng,

Eric.Monfroy@univ-nantes.fr

Abstract: Agile methods such as eXtreme Programming have achieved an explosive

interest in the software development community. They can be seen as a reaction to the

more traditional and control-oriented methods, agile methods handle changes in design and

requirements and they open up for creativity during the whole project lifecycle. The

knowledge management in agile methods is also agile, it means that knowledge creation

and sharing processes are simplified in comparison with other more comprehensive

development methodologies. This paper is developed under the idea that agile software

development can be enhanced by a better understanding of knowledge management and

creativity. eXtreme Programming is analyzed from the perspective of the creativity, we

believe that concepts related to creative teams (roles, structure, performance and purposes)

are important insights about the use of agile methods in general and eXtreme Programming

in particular.

Keywords/Index Terms: Knowledge Management; Creativity; Software Engineering;

Agile Methods; User-centered innovation.

1. Introduction
In a globalized and knowledge

based economy, firms continuously

need to increase efficiency and to

innovate in order to achieve a

competitive advantage and to

survive (Veryzer, 1998). New

product developers have

recognized that they need to inject

more customer know-how into their

product innovation processes,

encouraging the direct interaction

of development team with

customers, in contrast with

traditional practices. The

integration of customer know-how

into the development of new

products leads to a higher degree of

13

../../Users/Misra/Downloads/Broderick.Crawford@ucv.cl
mailto:Claudio.LeondelaBarra@ucv.cl
../../Users/Misra/Downloads/Ricardo.Soto@ucv.cl
mailto:Sanjay.Misra@covenantuniversity.edu.ng
../../Users/Misra/Downloads/Eric.Monfroy@univ-nantes.fr

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 2, December, 2013.

innovation, reduced risks and more

precise resource speeding

(Gassmann et al., 2005).

Nowadays, the paradigm shift from

producer-centered to user-centered

innovation describes the shift from

the concepts of innovation

activities considered the domain of

specialist producers to a notion that

embraces the active role of the end

user in the innovation process.

Numerous initiatives by firms like

Dell, Procter & Gamble and

Starbucks for integrating user-

generated innovations into the

firms indicate the usefulness and

importance of this approach.

Research in the field of new

product development and

innovation management suggests

that effective product development

requires interplay between

developers and customers (von

Hippel et al., 2001). In software

engineering it is the same

(Sandmeier, 2009). Such as the

insights from existing research, the

eXtreme Programing method from

software engineering and the

successful practices have enabled

to derive a model of extreme

innovation (Sandmeier &

Gassmann, 2006; Gassmann et al.,

2006). Extreme innovation allows

from customer feedback and ideas

to be integrated directly into new

product development. The

innovation process is iterative,

taking a step approach to

innovation, where each new phase

of development is tested with

customers. It requires a flexible

approach to project management

and a corresponding structural

organization.

Room for creativity is a key in

software development today; you

need creativity for building

software (Gutbrod & Wiele, 2012).

A fruitful way to think about

software development is to

consider it as a cooperative game of

invention and communication

(Cockburn, 2006).

Until the acceptance of

programming in pairs, an agile

practice in which two people sit

together and co-write programs

(Beck, 2000), the programmers

accented the invention portion of

the cooperative game. Today,

communication is equally

important. The innovation trends

emphasize firms ability to draw

from external knowledge and

effectively diffuse and use

knowledge within the firms as well

as outside the firms, e.g., in co-

action processes with stakeholders

across a multitude of disciplines for

the innovation success. In order to

develop quality software, teams

need to leverage the knowledge of

each team member skills (Neves et

al., 2011; Santos et al., 2013;

Santos & Goldman, 2011).

Software engineering is a

 14

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 2, December, 2013.

knowledge intensive discipline

where its activities require the use

and sharing of knowledge between

the stakeholders. Then, a better

transfer and application of the

knowledge aim to foster the

software processes, whether these

are done using traditional or agile

approaches (Patel et al., 2012).

In software organizations the

knowledge held by the employees

is the main asset and software

development projects depend

mostly on team performance:

“software is developed for people

and by people" (John et al., 2005).

But surprisingly, most of software

engineering research is technical

and deemphasizes the human and

social aspects. By other hand, the

traditional development process of

new products that is a fundamental

part in the marketing has been

recently criticized by Kotler and

Trías de Bes (Kotler & Trías de

Bes, 2004). They point out that

fundamental creative aspects are

not considered at all and as a

consequence this development is

not useful, viable or innovative. In

this context, it is interesting to

consider the new proposals of agile

methodologies for software

development in order to analyse

and evaluate them at the light of the

existing creative expositions,

mainly considering the teamwork

practices.

The agile principles and values

emphasize the collaboration and the

interaction in software

development and the creative work,

by other side, involves

collaboration in some form and it

can be understood as an interaction

between an individual and a

sociocultural context (Sanz &

Misra, 2011).

We believe that the innovation and

development of new and usable

products is an interdisciplinary

issue (Takeuchi & Nonaka, 1986;

Nonaka & Takeuchi, 1995). We are

interested in the study of the

potential of new concepts and

techniques to foster knowledge

management and creativity in agile

software development in general

and eXtreme Programming in

particular (Gu & Tong, 2004;

Crawford et al., 2012; Crawford et

al., 2008).

This paper is organised as follows:

Section 2 presents Agile Methods,

Section 3 is dedicated to the

presentation of Knowledge

Management, Section 4 presents

the background and general

concepts on Creativity and in

Section 5 we conclude the paper.

2. Agile Software Methods

Agile methods are based on

iterative and incremental

development, where requirements

and its software solutions evolve

through collaboration between

15

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 2, December, 2013.

cross functional teams. They

promote flexible planning,

evolutional development and

delivery, an iterative approach, and

encourages fast response to change.

It is a conceptual proposal

introduced in the Agile Manifesto

in 2001 (Beck, 2001). Through this

declaration its adherents have come

to value: “individuals and

interactions over processes and

tools, working software over

comprehensive documentation,

customer collaboration over

contract negotiation and responding

to change over following a plan”.

These new methods attempt a

useful balance between no process

and too much process, providing

just enough process to gain a

reasonable reward, resulting that

agile methods have significant

differences with the previous

engineering methods (Fowler,

2001):

Agile methods are adaptive

rather than predictive.

Engineering methods tend to try to

plan out a large part of the software

process in great detail for a long

span of time, this works well until

things change. So, their nature is to

resist change. Agile methods,

however, welcome change. They

are processes that try to adapt and

thrive on change, even to the point

of changing themselves.

Agile methods are people

oriented rather than process

oriented. The goal of engineering

methods is to define a process that

will work well whoever happens to

be using it. Agile methods assert

that no process will ever make up

the skill of the development team,

so the role of a process is to support

the development team in their

work. Scrum and eXtreme

Programming are the most used

agile software development

methods.

2.1 Scrum

Scrum adapts aspects from

complexity theory, systems

dynamics and theory of knowledge

creation setting a project

management agile software

approach (Moe et al., 2010). A

relevant characteristic in Scrum is

the self-management, representing

a new method for to plan and to

manage projects. It provides team

members the chance for mutual

recognition of competences. It is a

straight vehicle for communication,

collaboration, trust and cohesion.

The term Scrum was first adapted

as a metaphor, from (Nonaka &

Takeuchi, 1995) referring to the

holistic action of an entire rugby

team going the entire distance,

together.

In general, Scrum is described as a

development process for small

teams which includes a series of

16

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 2, December, 2013.

short development iterations named

“sprints”. Scrum is an iterative,

incremental framework (Schwaber

& Beedle, 2001), the sprints are

typically 1-4 weeks in length, and

which take place one after the

other, they are of fixed duration

(they end on a specific date

whether the work has been

completed or not) and are never

extended. At the beginning of each

sprint, a cross-functional team

prioritizes items from a list of

requirements, and commits to

complete them by the end of the

sprint; during the sprint, the

deliverable does not change. Each

work day, the team gathers briefly

to report to each other on progress,

and update simple charts that orient

them to the work remaining. At the

end of the sprint, the team

demonstrates what they have built,

and gets feedback which can then

be incorporated in the next sprint.

2.2 eXtreme Programming XP

Extreme Programming is based on

values of simplicity,

communication, feedback, and

courage. It works by bringing the

whole team together in the

existence of simple practices, with

enough feedback to enable the team

to see what they are doing and

where they are. In XP, every

member of the project is an integral

part of the whole team and plays a

specific role (Beck, 2000).

Roles in XP

XP defines the following roles for a

software development process

(Beck, 2000).

The customer defines what to do

(user stories) and in what order

(planning game), in XP the

customer is also responsible for the

requirements because the stories

are written by him. Additionally,

functional testing are derived and

verified by him from the stories

with the help from the Tester.

The programmer, it is a very

important role because XP is a

programmer-centric methodology.

It does not make use of specialists

like analysts, software architects or

software designers. Instead this

work is performed by the

programmers. The programmer

must have different skills, mainly:

communication (XP relies on face-

to-face communication), coding

and the ability to work in teams

(especially with collective code

ownership and programming in

pairs).

The managing part of an XP project

is divided into two roles: the coach

and the tracker. The coach is

responsible for the technical

execution of the project. The job of

the tracker is to gather whatever

metrics are being tracked for the

project (tracking is not really full

time, it is usually performed by the

coach or a programmer).

17

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 2, December, 2013.

The tester, in contrast to other

roles, he has only few

responsibilities. This is due to the

fact that most of the white box

testing is performed by the

programmers. The tester helps the

customer to write the functional

tests and run them when the tests

that cannot be automated (the role

of tester is not filled by a dedicated

person but by one of the

programmers or the tracker).

The consultant will be hired when

the project needs deeper (technical)

knowledge. The consultant is hired

to provide knowledge. The

consultant transfers this knowledge

to the team members, enabling

them to solve the problem on their

own. The Big Boss or Manager

provides the resources for the

process. The big boss needs to have

the general picture of the project,

be familiar with the current project

state, and know whether any

interventions are needed to ensure

the success of the project.

3. Knowledge Management

One of the most widely accepted

approaches to classifying

knowledge from a KM perspective

is the Knowledge Matrix of

Nonaka and Takeuchi (Nonaka &

Takeuchi, 1995). This matrix

classifies knowledge as either

explicit or tacit, and either

individual or collective. Nonaka

and Takeuchi also proposes

corresponding knowledge

processes that transform knowledge

from one form to another:

socialization (from tacit to tacit,

whereby an individual acquires

tacit knowledge directly from

others through shared experience,

observation, imitation and so on);

externalization (from tacit to

explicit, through articulation of

tacit knowledge into explicit

concepts); combination (from

explicit to explicit, through a

systematization of concepts

drawing on different bodies of

explicit knowledge); and

internalization (from explicit to

tacit, through a process of learning

by doing and through a

verbalization and documentation of

experiences). Nonaka and Takeuchi

model the process of organizational

knowledge creation as a spiral in

which knowledge is amplified

through these four modes of

knowledge conversion.

3.1 Knowledge Management in

Software Engineering

The main argument to Knowledge

Management in Software

Engineering is that it is a

knowledge intensive activity.

Software development is a process

where every person involved has to

make a large number of decisions

and individual knowledge has to be

shared and leveraged at a project

and organization level, and this is

exactly what KM proposes. People

 18

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 2, December, 2013.

in such groups must collaborate,

communicate, and coordinate their

work, which makes knowledge

management a necessity.

In software development one can

identify two types of knowledge:

Knowledge embedded in the

products or artifacts, since they are

the result of highly creative

activities and Meta-knowledge that

is knowledge about the products

and processes (Rus & Lindvall,

2002; Mentzas, 2000; Apostolou &

Mentzas, 2003).

4. Creativity

Creativity is defined as the capacity

to generate or recognize original,

elaborated and useful ideas

(Amabile, 1996). By self the

creative is an act of knowledge

creation (Sung & Choi, 2012).

Although the creativity can be

approached from the individual's

perspective, its greatest potential

and development is appreciated at

team level (Amabile, 1998;

Leenders et al., 2003; Gilson &

Shalley, 2004; Chen, 2006).

4.1 Creativity in Software

Development

Software engineering is a

knowledge intensive process that

includes some aspects of

Knowledge Management and

Creativity in all phases: eliciting

requirements, design, construction,

testing, implementation,

maintenance, and project

management (John et al., 2005). No

worker of a development project

has all the knowledge required to

fulfill all activities. This underlies

the need for communication,

collaboration and knowledge

sharing support to share domain

expertise between the customer and

the development team (Chau et al.,

2003).

The plan-driven approaches, like

the waterfall model and its

variances, facilitate knowledge

sharing through documentation.

They also promote usage of roles

with functional specialization in the

teams and detailed plans of the

entire software development

project. It shifts the focus from

individuals and their creative

abilities to the processes

themselves. By other hand, agile

methods emphasize and value

individuals and interactions over

processes. Plan-driven or tayloristic

methods heavily and rigorously use

documentation for capturing

knowledge gained in the different

activities of the life-cycle (Chau &

Maurer, 2004). In contrast, agile

methods suggest that most of the

written documentation can be

replaced by enhanced informal

communication among team

members internally and between

the team and the customers.

Thereby, the agile way is with a

stronger emphasis on tacit

knowledge rather than explicit

 19

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 2, December, 2013.

knowledge (Beck et al., 2001).

A way to improve software

development methods is to design a

process which can encourage the

creativity of the developers. There

are few studies reported on the

importance of creativity in software

development. In management and

business, researchers have

researched about creativity

evidencing that the workers who

had appropriate creativity

characteristics, worked on

complex, challenging jobs, and

were supervised in a no controlling

fashion produced more creative

work. Accordingly, the use of

creativity in software development

is undeniable, but requirements

engineering is not recognized as a

creative process in all the cases

(Maiden et al., 2004). In a few

publications the importance of

creativity has been investigated in

all the phases of software

development process (Gu & Tong,

2004; Glass, 1995; Crawford &

León de la Barra, 2007; León de la

Barra & Crawford, 2007; Crawford

et al.,2008; Crawford & León de la

Barra, 2008) and mostly focused in

the requirements engineering

(Robertson, 2005; Mich et al.,

2005; Nguyen & Cybulski, 2008;

Nguyen & Shanks, 2009).

Nevertheless, the use of techniques

to foster creativity in requirements

engineering is still shortly

investigated. It is not surprising that

the role of communication and

interaction is central in many of the

creativity techniques. The most

popular creativity technique used

for requirements identification is

the classical brainstorming and

more recently, role-playing-based

scenarios, user stories, storyboard-

illustrated scenarios, simulating and

visualizing have been applied as an

attempt to bring more creativity to

requirements elicitation. These

techniques try to address the

problem of identifying the

viewpoints of all the stakeholders

(Mich et al., 2005; O'hEocha &

Conboy, 2010).

However, in requirements

engineering answers are not

evident, it is indispensable to ask,

observe, discover, and increasingly

create requirements. If the goal is

to build new and innovative

products, we must make creativity

part of the requirements activities.

Indeed, the importance of creative

thinking is expected to increase

over the next decade (Maiden &

Gizikis, 2001). In (Robertson,

2005; Robertson, 2002) very

interesting open questions are

proposed: is inventing part of the

requirements activity? It is if we

want to advance. So, who does the

inventing? Requirements analysts

are ideally placed to innovate. They

understand the business problem,

have updated knowledge of the

technology, will be blamed if the

20

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 2, December, 2013.

new product does not please the

customer, and know if inventions

are appropriate to the work being

studied. We cannot rely on the

customer to know what to invent.

The designer sees his task as

deriving the optimal solution to the

stated requirements. We cannot

rely on programmers because they

are far away from the work of

client to understand what needs to

be invented.

In short, requirements analysts are

the people whose skills and

position allows, indeed encourages,

creativity.

In (Boden, 2004) the author, a

leading authority on cognitive

creativity, identifies basic types of

creative processes: exploratory

creativity explores a possible

solution space and discovers new

ideas, combinatorial creativity

combines two or more ideas that

already exist to create new ideas,

and transformational creativity

changes the solution space to make

impossible things possible. Then,

most requirements engineering

activities are exploratory, acquiring

and discovering requirements and

knowledge about the problem

domain. But, requirements

engineering practitioners have

explicitly focused on combinatorial

and transformational creativity.

4.2. Creative Process

The creative process is the main

aspect of team performance,

because it supposes a series of

clearly defined phases to be

realized by the team members in

order to obtain a concrete creative

result. The phases, considering the

ideas of Wallas (Wallas, 1926) and

Leonard and Swap (Leonard &

Swap, 1999), are the following

ones:

1) Initial preparation: the

creativity will bloom when the

mental ground is deep, fertile and it

has a suitable preparation. Thus,

the deep and relevant knowledge,

and the experience precedes the

creative expression.

2) Encounter: the findings

corresponding to the perception of

a problematic situation.

3) Final preparation: it

corresponds to the understanding

and foundation of the problem. It is

the immersion in the problem and

the use of knowledge and analytical

abilities. It includes search of

information and the analysis of

variables.

4) Generation of options: referred

to produce a set of alternatives. It

supposes the divergent thinking. It

includes, on one hand, finding

principles, lines or addresses, when

making associations and uniting

different references and, on the

other hand, to generate possible

solutions, combinations and

interpretations.

5) Incubation: it corresponds to

 21

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 2, December, 2013.

the required time to reflect about

the elaborated alternatives, and to

“test them mentally”.

6) Options Choice: it corresponds

to the final evaluation and selection

of the options. It supposes the

convergent thinking.

7) Persuasion: closing of the

creative process and

communication to other persons.

Because it is not a linear process,

for each one of the defined phases

it is possible to associate feedbacks

whose “destiny” can be anyone of

the previous phases in the

mentioned sequence.

The team performance is directly

determined by the creative process

(Kotler & Armstrong, 2003;

Leonard & Swap, 1999). It is

interesting to interrelate the phases

of XP with the phases considered in

a creative process.

The initial preparation defined in

the creative process corresponds to

the exploration phase in XP, where

the functionality of the prototype

and familiarization with the

methodology are established.

The final stage of preparation is

equivalent with the phases of

exploration and planning in XP,

defining more in detail the scope

and limit of the development.

The option generation phases,

incubation and election of options

defined in the creative process

correspond to the iterations made in

XP and also with the liberations of

the production phase (small

releases). In XP there is not a clear

distinction of the mentioned

creative phases, assuming that they

occur to the interior of the team.

The feedback phase (understanding

this one as a final stage of the

process, and not excluding that can

have existed previous micro-

feedbacks since the creative

process is nonlinear) it could

correspond in XP with the

maintenance phase.

The persuasion phase is related to

the phase of death established in

XP, constituting the close of the

development project with the final

liberation.

4.3. Roles in a Creative Team

Lumsdaine and Lumsdaine

(Lumsdaine & Lumsdaine, 1995)

proposed the cognitive abilities

required to creative problem

resolution, the different roles

considered are the following ones:

1) The Detective is in charge of

collecting the greatest quantity of

information related to the problem.

2) The Explorer detects what can

happen in the area of the problem

and its context. He thinks on its

long term effects and he anticipates

certain situations that can affect the

context. The explorer perceives the

problem in a broad sense.

3) The Artist creates new things,

22

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 2, December, 2013.

transforming the information. He

must be able to break its own

schemes to generate eccentric

ideas, with imagination and feeling.

4) The Engineer is the one in

charge of evaluating new ideas. He

makes the idea convergence

process, in order to clarify the

concepts and to obtain practical

ideas that can be implemented for

the resolution of problems.

5) The Judge must do a hierarchy

of ideas and decide which of them

will be implemented. Additionally,

he must discover faults or

inconsistences in the solutions.

6) The Producer is in charge of

the implementation of the chosen

ideas.

Leonard and Swap (Leonard &

Swap, 1999) have mentioned

possible additional roles, trying to

improve the divergence and the

convergence in the process:

The provoker takes the members of

the team “to break” habitual mental

and procedural schemes to allow

the mentioned divergence (in the

case of the “artist”) or even a better

convergence (in the case of the

“engineer”).

Think tank that it is invited to the

team sessions to give a renewed

vision of the problem-situation

based on his expertise and

experience.

The facilitator helps and supports

the team work in its creative task in

different stages.

The manager cares for the

performance and especially for the

results of the creative team trying

to adjust them to the criteria and

rules of the organization (use of

resources, due dates).

Kelley and Littman (Kelley and

Littman, 2005), on the other hand,

have proposed a role typology

similar to Lumsdaine and

Lumsdaine (Lumsdaine &

Lumsdaine, 1995), being

interesting that they group the roles

in three categories: those directed

to the learning of the creative team

(corresponding with the detective,

explorer, artist, provoker and think

tank), others directed to the internal

organization and success of the

team (similar to the judge,

facilitator and manager) and roles

whose purpose is to construct the

innovation (related to the role of

the engineer and judge).

The following is the correlation

between creative and XP roles:

The client in XP plays the role of

detective, collecting the

information related with the

problem, he generates the first

contact with the software

development team.

The function of explorer consisting

in defining completely the problem

is made in XP as much by the client

as the manager of the team, all

23

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 2, December, 2013.

together appreciate the reach of the

identified problem, as well as of the

possible solutions.

The developer that in XP

methodology is in charge of the

analysis, design and programming

of software does the function of the

artist, consisting in transforming

the information, creating new

relations, and therefore generating

interesting solutions.

The function of the engineer

referred to clarify and to evaluate

the new ideas, in terms of its

feasibility is made in XP by the

tester and the tracker.

In XP the tracker and the client

play the function of the judge,

understood as the definitive

selection of the solutions to

implant.

In XP the client (in his

organization) plays the role of the

producer, referred to the

implementation of the selected

ideas (strictly speaking it is

working software), including the

processes and procedures that this

function implies.

The supporting roles considered

are:

Creativity demands that the

divergence as well as convergence

in the solutions to be maximum and

complete. There is not explicit

reference in XP methodology about

divergent thinking. It is interesting

to consider the provoker.

The XP role of the consultant is

equivalent to the think tank in

creativity, helping the team to work

“from outside”.

The coach in XP corresponds to the

facilitator whose function is

helping the team.

The manager whose function is to

lead to the team in terms of its

general efficiency and its

effectiveness corresponds with big

boss or manager in XP.

4.4. Basic Organizational

Conditions

Respecting to the structural

dimension of a new product

development team, it is possible to

relate the roles in creativity to the

roles defined in the agile

methodology separating base roles

(those directly related to the

creative processes and software

development) and support roles

(whose function is to support or

lead the other roles for a better

performance). Furthermore, it is

important to considerate how the

team can operate. In order to

implement the functionality of each

role, we must considerate two

aspects: basic organizational

conditions and the pertinent

creative process.

The creative team performance is

determined by the organizational

conditions in which it is inserted

24

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 2, December, 2013.

(Amabile, 1998; Isaksen et al.,

1999; Leonard & Swap, 1999).

Some conditions are necessary,

although not sufficient, for the

creative performance: autonomy,

communication, cooperation,

learning, handling of conflicts,

pressure, the formalization,

evaluation of performance,

resources availability and

atmosphere of work.

The autonomy refers to the

capacity of the people and the

whole team to act and make

decisions. By example, this aspect

is related to the following XP

practices: the client in situ, since it

is part of the team and, in addition,

has decisional capacity delegated

by its own organization; the use of

metaphors, of codification

standards and the existence of

“right” rules really represent codes

of shared thought and action, that

make possible the autonomy of the

team members; the small deliveries

and the fact of the collective

property allow that all the involved

ones share official and explicit

knowledge, that results in a greater

independence of the members and

the possibility of a minor

coordination among them.

The communication, cooperation

and learning of members are

fortified since the client is present

and there exist opened spaces to

work together and in a pair

programming mode. The dynamic

of work is based on planning game

and metaphors involving all the

participants from the beginning

(client and equipment developer).

Also, the use of codification

standards, the small deliveries, the

collective property of the code and

the simple design, allow that the

person has clear performance codes

and rules about what is expected

and acceptable (internal culture) in

order to establish the required

communication and cooperation.

The handling of possible conflicts

between the client and the

development team, and internally at

team level is favored by XP

practices handling it (presence of

the client, pairs programming,

planning game, continuous

integration, tests, collective

property), or to reduce it and to

avoid it (small deliveries, simple

design, forty hour a week and

codification standard).

In creativity the pressure is

appraised as favorable until certain

degree, it is present in XP through

the client in situ, the programming

by pairs, the planning game, the

tests and continuous integration. It

is possible to avoid, or at least to

reduce, the pressure through the re-

factorization, the small deliveries,

the collective property, and the fact

that surpassing the forty weekly

working hours is seen like an error.

25

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 2, December, 2013.

The formalization gives account of

all those formal aspects defined

explicitly and that must be known

and shared by the whole team. It is

assured in XP through planning

game, metaphors, continuous

integration, the collective property,

the forty hours per week and the

codification standards guiding the

desirable conduct and performance

of the team.

The evaluation of the performance

is made in XP through pair

programming (self-evaluation and

pair evaluation), frequent tests and

even through the forty weekly

hours (a metric indicating the limit

of effectiveness), all at the light of

the planning. Finally, the presence

of client constitutes the permanent

and fundamental performance

evaluation of the team and the

software products. These

evaluation characteristics empower

the learning process.

The time dedicated has

fundamental importance in XP

team respecting the available

resources. This aspect is strongly

stressed in creativity. The pair

programming and the developer

multifunctional role allow

optimizing the partial working-

times, as well as the whole project

time, ensuring a positive pressure.

The atmosphere of work, referred

in creativity to the surroundings

that favor or make difficult the

creative performance (including

aspects like available spaces, noise,

colors, ventilation, relaxation

places …) are assured only

partially in XP through the open

spaces, as a way to assure the

interaction between members of the

team.

5. Conclusion

This paper is a call for creativity

enhancing agile software

development. It has presented some

approaches for improving the XP

team structure and operation.

Meanwhile, we are taking a walk

through two questions:

How KM practices should be

integrated with agile software?

In Software Engineering many

development approaches work

repeating the basic linear model

iteratively. Then, in a lot of cases

an iterative development approach

is used to provide rapid feedback

and continuous learning in the

development team. To facilitate

learning among developers, agile

methods use daily or weekly stand

up meetings, pair programming and

collective ownership. Agile

methods emphasize on people,

communities of practice,

communication, and collaboration

in facilitating the practice of

sharing tacit knowledge at a team

level. An important finding is the

need to not focus exclusively on

explicit knowledge but also on tacit

 26

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 2, December, 2013.

knowledge.

They also foster a team culture of

knowledge sharing, mutual trust

and care. Agile development is not

defined by a small set of practices

and techniques. Agile development

defines a strategic capability, a

capability to create and respond to

change, a capability to balance

flexibility and structure, a

capability to draw creativity and

innovation out of a development

team, and a capability to lead

organizations through turbulence

and uncertainty. They rough out

blueprints (models), but they

concentrate on creating working

software. They focus on individuals

and their skills and on the intense

interaction of development team

members among themselves and

with customers and management.

How creativity can enhance agile

practices?

By other side, Creativity and

innovation are essential skills in

almost any teamwork. Having a

team that can solve problems

quickly and effectively with a little

creative thinking is beneficial to

everyone. The performance of a

team depends not only on the

competence of the team itself in

doing its work, but also on the

organizational context. The

organizational conditions in which

the team is inserted are very

important too. If workers see that

their ideas are encouraged and

accepted, they will be more likely

to be creative, leading to potential

innovation in the workplace. The

creation of a collaborative work

environment will foster the

communication between employees

and reward those that work

together to solve problems.

Encouraging team members to take

risks, the opposite of creativity is

fear. Then, it is necessary to create

an environment that is free from

fear of failure: failures are a

learning tool.

We believe that knowledge

management and creativity

enhancing agile software

development can be aligned with

the design of high quality software.

Here, we provided an

understanding of knowledge

management and creativity in

relation with new software

engineering trends.

References
Amabile, T. (1996). Creativity in Context:

Update to the Social Psychology of

Creativity. Westview Press.

Amabile, T. (1998). How to kill creativity.

Harvard Business Review, Sept-

Oct:77-87.

Apostolou, D. & Mentzas, G. (2003).

Experiences from knowledge

management implementations in

companies of the software sector.

 27

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 2, December, 2013.

Business Process Management

Journal, 9(3).

Beck, K. (2000). Extreme programming

explained: embrace change.

Addison-Wesley Longman

Publishing Co., USA.

Beck, K. (2001). Agile alliance.

http://agilemanifesto.org.

Beck, K., Beedle, M., Bennekum, A. V.,

Cockburn, A., Cunningham, W.,

Fowler, M., Grenning, J., Highsmith,

J., Hunt, A., Jeries, R., Kern, J.,

Marick, B., Martin, R. C., Mellor, S.,

Schwaber, K., Sutherland, J., &

Thomas, D. (2001). Manifesto for

agile software development.

Available at

http://agilemanifesto.org.

Boden, M. (2004). The Creative Mind:

Myths and Mechanisms. Routledge,

USA.

Chau, T. & Maurer, F. (2004). Knowledge

sharing in agile software teams. In

Lenski, W., editor, Logic versus

Approximation: Essays Dedicated to

Michael M. Richter on the Occasion

of his 65th Birthday, volume 3075 of

Lecture Notes in Articial

Intelligence, pages 173-183.

Springer.

Chau, T., Maurer, F., & Melnik, G. (2003).

Knowledge sharing: Agile methods

versus Tayloristic methods. Twelfth

International Workshop on Enabling

Technologies: Infrastructure for

Collaborative Enterprises, WETICE,

pages 302-307.

Chen, M. H. (2006). Understanding the

benefits and detriments of conflict on

team creativity process. Creativity

and Innovation Management,

15(1):105-116.

Cockburn, A. (2006). Agile Software

Development: The Cooperative

Game (2nd Edition) (Agile Software

Development Series). Addison-

Wesley Professional.

Crawford, B. & León de la Barra, C.

(2007). Enhancing creativity in agile

software teams. Lecture Notes in

Computer Science,4536:161-162.

Crawford, B. & León de la Barra, C.

(2008). Integrating creativity into

extreme programming process. In

Cordeiro, J. and Filipe, J., editors,

ICEIS, pages 216-219.

Crawford, B., León de la Barra, C., &

Letelier, P. (2008a). Communication

and creative thinking in agile

software development. In Cascini,

G., editors, Computer-Aided

Innovation (CAI), volume 277 of

The International Federation for

Information Processing, pages 205-

216. Springer US.

Crawford, B., León de la Barra, C., &

Rubio, J. (2008b). Knowledge

sharing in traditional and agile

software processes. In Cordeiro,

J.,Shishkov, B., Ranchordas, A., and

Helfert, M., editors, ICSOFT

(PL/DPS/KE), pages 376-379.

INSTICC Press.

Crawford, B., León de la Barra, C., Soto,

R., Misra, S., & Monfroy, E. (2012).

Knowledge management and

creativity practices in software

engineering. In Liu, K. and Filipe, J.,

editors,KMIS, pages 277-280.

SciTePress.

Fowler, M. (2001). The new methodology.

Available at

www.martinfowler.com/articles/new

Methodology.html

Gassmann, O., Sandmeier, P., & Wecht, C.

(2006). Extreme customer innovation

in the front-end: learning from a new

software paradigm. IJTM, 33(1):46-

66.

28

http://www.martinfowler.com/articles/newMethodology.html
http://www.martinfowler.com/articles/newMethodology.html

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 2, December, 2013.

Gassmann, O., Wecht, C., & Sandmeier, P.

(2005). Early customer integration

eci new trends and developments

beyond the lead user ap-proach. In

European Academy of Management

Conference (EURAM), Munich.

Gilson, L. L. & Shalley, C. E. (2004). A

little creativity goes a long way: An

examination of teams engagement in

creative processes. Journal of

Management, 30(4):453-470.

Glass, R. (1995). Software creativity.

Prentice-Hall, USA.

Gu, M. & Tong, X. (2004). Towards

hypotheses on creativity in software

development. PROFES, 3009:47-61.

Gutbrod, R. & Wiele, C. (2012). The

Software Dilemma: Balancing

Creativity and Control on the Path to

Sustainable Software. Management

for professionals. Springer Berlin

Heidelberg.

Isaksen, S., Lauer, K., & Ekvall, G.

(1999). Situational outlook

questionnaire: A measure of the

climate for creativity and change.

Psychological Reports, pages 665-

674.

John, M., Maurer, F., & Tessem, B.

(2005). Human and social factors of

software engineering: workshop

summary. ACM SIGSOFT Softw.

Eng., Notes, 30:1-6.

Kelley, T. & Littman, J. (2005). The Ten

Faces of Innovation: IDEOs

Strategies for Defeating the Devil's

Advocate and Driving Creativity.

Throughout Your Organization.

Doubleday Random House, USA.

Kotler, P. & Armstrong, G. (2003).

Principles of Marketing. Prentice

Hall, New Jersey.

Kotler, P. & Trías de Bes, F. (2004).

Marketing Lateral. Editorial

Pearson/Prentice Hall, Spain.

Leenders, R. T., van Engelen, J. M., &

Kratzer, J. (2003). Virtuality,

communication, and new product

team creativity: a social network

perspective. Journal of Engineering

and Technology Management, 20(1-

2):69-92. Special Issue on Research

Issues in Knowledge Management

and Virtual Collaboration in New

Product Development.

León de la Barra, C. & Crawford, B.

(2007). Fostering creativity thinking

in agile software development.

Lecture Notes in Computer Science,

4799:415-426.

Leonard, D. & Swap, W. (1999). When

Sparks Fly: Igniting Creativity in

Groups. Harvard Business School

Press, Boston.

Lumsdaine, E. & Lumsdaine, M. (1995).

Creative Problem Solving: Thinking

Skills for a Changing World.

McGraw-Hill, New York.

Maiden, N. & Gizikis, A. (2001). Where

do requirements come from? IEEE

Software, 18:10-12.

Maiden, N., Gizikis, A., & Robertson, S.

(2004). Provoking creativity:

Imagine what your requirements

could be like. IEEE Software, 21:68-

75.

Mentzas, G. (2000). The two faces of

knowledge man-agement.

International Consultant's Guide,

pages 10-11. Available at

http//imu.iccs.ntua.gr/Papers/O37-

icg.pdf.

Mich, L., Anesi, C., & Berry, D. (2005).

Applying a pragmatics based

creativity fostering technique to

requirements elicitation. Requir.

Eng., 10:262-275.

Moe, N., Dingsoyr, T., & Dyba, T.

(2010). A teamwork model for

understanding an agile team: A case

29

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 2, December, 2013.

study of a scrum project. Information

and Software Technology, 52:480-

491.

Neves, F., Correia, A., Rosa, V., & de

Castro Neto, M. (2011). Knowledge

creation and sharing in software

development teams using agile

methodologies: Key insights

affecting their adoption. In

Information Systems and

Technologies (CISTI), 6th Iberian

Conference, pages 1-6.

Nguyen, L. & Cybulski, J. L. (2008). Into

the future: inspiring and stimulating

users' creativity. In PACIS, page

203. AISeL.

Nguyen, L. & Shanks, G. G. (2009). A

framework for understanding

creativity in requirements

engineering. Information & Software

Technology, 51(3):655-662.

Nonaka, I. & Takeuchi, H. (1995). The

Knowledge Creating Company.

Oxford University Press, USA.

O'hEocha, C. & Conboy, K. (2010). The

role of the user story agile practice in

innovation. In Abrahamsson, P. and

Oza, N. V., editors, LESS, volume

65 of Lecture Notes in Business

Information Processing, pages 20-

30.Springer.

Patel, A., Sey, A., Taghavi, M., Wills, C.,

Na, L., Latih, R., & Misra, S. (2012).

A comparative study of agile,

component-based, aspect-oriented

and mashup software development

methods. Technical Gazette,

19(1):175-189.

Robertson, J. (2002). Eureka! why analysts

should invent requirements. IEEE

Software, 19:20-22.

Robertson, J. (2005). Requirements

analysts must also be inventors.

IEEE Software, 22:48-50.

Rus, I. & Lindvall, M. (2002). Knowledge

management in software

engineering. IEEE Software,

19(3):26-38.

Sandmeier, P. (2009). Customer

integration strategies for innovation

projects: anticipation and brokering.

IJTM, 48(1):1-23.

Sandmeier, P. & Gassmann, O. (2006).

Extreme innovation; nearly two-

thirds of new products fail after

launch. The extreme programming

methods used in software

engineering show how firms can

adopt more effective, customer-led

innovation processes. European

Business Forum, Autumn 2006(26).

Santos, V. A. & Goldman, A. (2011). An

approach on applying organizational

learning in agile software

organizations. In HICSS, pages

4852-4861.

Sanz, L. F. & Misra, S. (2011).

Influence of human factors in

software quality and

productivity. In Murgante, B.,

Gervasi, O., Iglesias,

A.,Taniar, D., and Apduhan,

B. O., editors,ICCSA (5),

volume 6786 of Lecture Notes

in Computer Science, pages

257-269. Springer.

Schwaber, K. & Beedle, M. (2001).

Agile Software Development

with Scrum. Prentice Hall

PTR, Upper Saddle River, NJ,

USA, 1st edition.

Sung, S. Y. & Choi, J. N. (2012).

Effects of team knowledge

management on the creativity

and financial performance of

organizational teams.

Organizational Behavior and

30

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 2, December, 2013.

Human Decision Processes,

118(1):4-13.

Takeuchi, H. & Nonaka, I. (1986).

The new product development

game. Harvard Business

Review.

Veryzer, R. W. (1998).

Discontinuous innovation and

the new product development

process. Journal of Product

Innovation Management,

15(4):304-321.

von Hippel, E., Thomke, S., &

Sonnack, M. (2001). Creating

Breakthroughs at 3M. HBR on

Point.

Wallas, G. (1926). The art of

thought. Harcourt Brace, New

York.

31

