
Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 1 (Maiden Edition), July, 2013

Abstract: During testing of software, most of the bugs lying dormant in the software gets uncovered once the test cases are

executed. Different bugs may take different amounts of effort and expertise for their removal. To understand the complexity

of bugs from a developer‟s perspective, researchers have developed different mathematical models. Software consists of two

types of bugs, dependent and independent. Dependent bugs are those whose removal depends upon the removal of some

other bugs on which it is dependent. Dependency of bugs also makes the bug complex and bugs will take more time during

fixing. Different debugging time lags functions have been taken to model different complexity of bugs. The aim of this paper

is to study the bugs of different complexity. The complexity of bugs has been also modeled using dependency concept.

Testing effort dependent bug complexity model using fault dependency has been also discussed. We also feel that that more

complex bug will take more time and less complex bug will take less time during fixing. During removal of bugs, the

removal team gets more familiar with the code during the fixing. The learning effect during testing has been incorporated

using logistic removal rate. The models are validated based on different comparison criteria namely MSE, R
2
 , Bias,

Variation and Root mean squared error.

Keywords/Index Terms: Non-homogeneous Poisson process, bug complexity, bugs types.

1. INTRODUCTION

During last four decades software reliability growth

models have been used to measure the reliability

growth and testing progress of software. (Musa 1987)

defined software reliability as probability of failure

free operation of the software in a fixed environment

for a fixed interval of time. The fitting of software

reliability growth models also depends upon the

nature of failure data which is either of exponential or

S-shaped nature or mixed of the two. On the same

line, software reliability growth models that measure

reliability growth of the software belongs to either of

the two categories - Exponential and S-shaped. In

software simple bugs are detected and removed in an

exponential fashion. In an exponential growth curve,

it is assumed that the error removal intensity is

linearly related to the remaining number of software

errors. The causes of S-shapedness are many and have

been discussed by (Yamada, Ohba and Osaki 1984,

Ohba 1984, Bittanti, Bolzern, Pedrotti and Scattolini

1988) and others. Software team which deals the

removal process also learn and their skill grow. In

reality, it has been observed that any software system

may contain different types of bugs. Some bug affects

the functionality of software and users gives different

levels of severity which ranges from cosmetics, minor

, major and critical. These bugs may take different

amounts of time for their removal. When a developer

wants to fix the bugs, the bugs may take less time or

more time and it only depends upon the complexity of

bugs. We define the complexity of bugs in terms of

time taken during removal. Bugs are detected ,

isolated then removed or fixed. Some bugs take more

time while others takes less time. This is a question

why a bug takes more time or less time. And the

answer is it depends how the bug is complex means

what is their dependency, environmental impact and

link to another module or functions. We need to treat

different complexity of bugs with different strategy. A

study in bugs complexity and their categorization is

done by many researchers [(Obha 1984, (Yamada,

Osaki and Narithisa 1985), (Kimura, Yamada and

Osaki 1992) . Different types of growth models have

been developed, namely, exponential, hyper

exponential , exponential S-shaped model to capture

different types of bugs present in the software.

Of late different researchers worked in this area and

touched the depth concept of bug complexity. (Kapur,

Younes and Agarwala 1995) developed a generalized

Erlang SRGM to classify the bugs in the software

system as simple, hard and complex with the

assumption that the time delay between the failure

observation and its removal represent the complexity

of bugs. Implicit categorization of faults based on the

time of detection of the fault has been discussed by

(Kapur, Bardhan and Kumar 2000). Now, it is clear

from literature survey that an SRGM should explicitly

define the different types of faults due to the fact that

any type of fault can be detected at any point of

testing time. Thus, it is clear that modeling the bug

complexity will help in resource management and

provides an ease to project managers during testing or

in the operational phase. In this paper a study has

been conducted on mathematical modeling of

software bug complexity which categories bugs into

different categories depending upon the time they take

Mathematical Modeling of Software Bug

Complexity

Vir Bahadur Singh
1
, Meera Sharma

 2
, Sujata Khatri

3
 ,Om Sharan Srivastava

4

1
 Delhi College of Arts & Commerce, University of Delhi, Delhi India

2
 Swami Shraddhanand College, University of Delhi, India

3
 DDU College, University of Delhi, Delhi, India

4
Delhi University Computer Centre University of Delhi, Delhi India

29

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 1 (Maiden Edition), August, 2013

in fixing. Bug complexity has been defined by

considering the time they take means failure detection

and removal, the learning of the testing team, bug

dependency and testing effort with bug dependency.

Various debugging time lags functions have been

taken for different types of bugs

It has been assumed that simple faults can be

independently removed (termed as leading faults) and

debugging time lag assumed to be negligible. Hard

faults take more time in fixing due to the fact that it is

assumed that they are dependent faults, whose

removal is dependent on the removal of some leading

faults. Hard faults cannot be immediately removed

but lag the fault detection process by a debugging

time lag / delay effect factor  t . Complex faults

takes more time in removal as they are more

dependent on other bugs and also assumed to be

dependent faults, whose removal is also dependent on

the removal of some leading faults. Complex faults

need more debugging time lag than hard bugs by a

debugging time lag / delay effect factor  t . But, in

the case of complex faults debugging time lag is more

in comparison to the hard faults.

2. Basic Assumption

An SRGM based on NHPP can be formulated as a Poisson

process:

 
 

  2,1,0,)(exp
!

)(
)(Pr  ntm

n

tm
ntN

n (1)

And
 
t

0

dx)x()t(m

Here, the expected no. of bugs is  tN , and mean value

function is  tm The intensity function λ(x) (or the mean

value function m(t)) is the basic building block of all the

NHPP models existing in the software reliability

engineering literature.

1. The non homogeneous poison process has been used to

model the bug detection /removal phenomenon.

2. Remaining bugs lying dormant in the software cause

failures.

3. n types of bugs existing in the software and each type

of bug is modeled by a different growth curve.

4. Each time when a failure is observed, an immediate

(delayed) effort is taken to decide the cause of the

failure and remove the corresponding bug.

5. No bug generation has been considered in the paper.

6. The bug removed in  ,t t t is proportional to the

expected number of bugs remaining to be

removed.

3. Software Reliability Growth Modeling

In this section we study software reliability growth model,

which determines the types of bug and their proportion

present in the software based on their complexity. We

have also discussed the logistic removal rate for different

types of bugs present in the software system. Dependency

based models have been also discussed.

3.1. Generalized Erlang Software Reliability Growth

Model[Kapur et al. 1995]

 This model is a generalized model and provides the

proportion of different types of bugs lying in the software

Kapur et al.[9] . It is also assumed that different types of

bugs exists in the software and may take different amount

of time and follows different growth curves.

   
 1

1 0

1 exp
!

j
n i

i

i i

i j

b t
m t a b t

j



 

  
    
    

  (2)

 m t :mean value function of the expected

number of detected/removed bugs the

time interval],0[t

i : Type of bug

ip : proportion of type i bugs

 i ia ap : initial content of type i bug

 ifm t : mean numbers of failure caused by i bugs

in time t.

 iism t : mean number of type i bugs isolated in

time t

 im t : mean number of type i bugs removed in time t.

b1    2 2,d t d t : bug removal rate per bug for type 1,

type 2, and type 3.

 i : constant (for i =2 to n type of bugs)

 j : the number of stages required to

remove the bug after its failure

observation/bug detection (j is

dependent upon the type of bug)

GE-n : model with n type of bugs.

3.2. Modeling Complexity of Bugs by Considering

Learning [Singh V.B.2008]

Different types of bugs are depicted by different

types of curve. Here assumption is removal

growth of type 1 bug which is simple in nature

follows exponential curve. For other bugs, which

are more, sever in nature, we incorporate logistic

learning during removal phenomenon and these

bugs are depicted by different types of S-shaped

curves. In the beginning, we assume that only

three types of bugs exist in software type 1, type 3

and type 3 (simple, hard and complex namely)

and later, we extend our modeling to n types of

bug.

Assuming 1a , 2a and
3

a to be simple, hard and

complex bugs in a software system

(1 2 3a a a a  ), the simple bug removal process

is modeled by the following

 1dm t

dt
 =   1 1 1b a m t (3)

1()m t is the number of simple bugs removed.Solving

equation (3) with the initial condition 1(0) 0m  , we

get:

 30

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 1 (Maiden Edition), July, 2013

  1 1 1() 1 expm t a b t   (4)

The hard bugs removal process is modeled as a two-

stage process,

 2 fdm t

dt
 =  2 2 2(fb a m t (5)

 2dm t

dt
 =

 
   2

2 2

2 2

()
1 exp

f

b
m t m t

b t


 
 (6)

Here we assume that learning of removal team grows

as testing progresses and follows logistic removal

rate.

Solving equation (5) and (6) with the initial

condition 2 2(0) 0, (0) 0fm m  , we get:

    
  

2 2

2 2

2 2

1 1 exp
()

1 exp

b t b t
m t a

b t

  


 
 (7)

Here  2 fm t denotes the number of failures observed

in time t whereas  2m t represents the number of bugs

removed in time t.

 The complex bug removal process is modeled as a

three-stage process,

 3 fdm t

dt
 =  3 3 3(fb a m t (8)

 

   3

3 3 3(
is

f is

dm t
b m t m t

dt
  (9)

 

 
   3 3

3 3

3 3

(
1 exp

is

dm t b
m t m t

dt b t
 

 
 (10)

In a practical scenario, the removal rate follows

logistic as learning of the removal team grows as

testing progresses and Solving equation (8), (9) and

(10) with the initial

condition 3 3 3(0) 0, (0) 0 (0) 0f ism m and m   , we get:

 

  

2 2

3
3 3

3 3

3 3

1 1 exp
2

()
1 exp

b t
b t b t

m t a
b t

  
      
  


 

 (11)

Here, 2 ()m t and 3 ()m t are expressed by delayed S-

shaped and 3-stage Erlang growth curves with logistic

removal rates. The removal rates for simple , hard and

complex bugs are given as 1b ,

    
2 2

2 22 2

1 1

11 exp
d b

b tb t 

 
  

    

 and

  
 

 
3

3 3 2 2
3 3 3 3 3

11

1 exp 1

b t
d b

b t b t b t 

 
  

    
 

respectively.

It is seen that 2b and 3b equal to 1b in long run. The

removal rates for three types of bugs become 1b

    
2 1

2 12 1

1 1

11 exp
d b

b tb t 

 
  

    

,and

  
 

 
1

3 1 2 2
3 1 3 1 1

11

1 exp 1

b t
d b

b t b t b t 

 
  

    
 

respect

ively.

We also note that

       
 

 
1

1 1 1 2 2
2 12 1 3 1 3 1 1

11 1 1

11 exp 1 exp 1

b t
b b b

b tb t b t b t b t  

   
     

           

, Which is in accordance with the severity of bugs.

The mean value function of the proposed SRGM is

       1 2 3m t m t m t m t  

Where  
1

m t is the mean value function of the simple

bugs removed in time  0, t ,  
2

m t is the mean value

function of the hard bugs removed in time  0, t and

 tm3 is the mean value function of the complex bugs

removed in time  0, t .

    
    

  

 

  

2 2

3
3 3

2 2

1 1 2 3

2 2 3 3

1 1 exp
21 1 exp

1 exp (12)
1 exp 1 exp

b t
b t b t

b t b t
m t a b t a a

b t b t 

  
           

    
   

Assuming 1 2 3 ,b b b b   we have

    
    

  

 

  

2 2

1 2 3

2 3

1 1 exp
1 1 exp 2

1 exp (13)
1 exp 1 exp

b t
bt bt

bt bt
m t a bt a a

bt bt 

  
           

    
   

Assuming

 1 1, 2 2 3 1 21a ap a ap and a a p p    

    
    

  
 

 

  

2 2

1 2 1 2

2 3

1 1 exp
1 1 exp 2

1 exp 1 (14)
1 exp 1 exp

b t
bt bt

bt bt
m t ap bt ap a p p

bt bt 

  
           

      
   

The model described above can be generalized to n

different types of bugs depending upon their severity.

      
  

 
 

1 1
1

1 2

0

1 exp

1 exp (15)

1 exp
!

i

n n i i

ji
i

i i i

i

j

a

b t

m t m t a b t
b t

b t
j




 



 

    
  
   
    

 


Model described in above equation determines the

type of bugs present in a software with a logistic

removal rate and is abbreviated as GE-n (Logistic).

If i =0 , above model reduces to equation (2).

Assuming 1 2 3 ... nb b b b b     . We also assume

that the value of  remaining same for different types

of bug from estimation view. We have

    
  

 
 1

1 1

2 0

1
1 exp 1 exp (16)

!1 exp

jn i

i

i j

bt
m t a b t a bt

jbt



 

  
        

      
 

31

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 1 (Maiden Edition), August, 2013

3.3. Modeling Complexity of Bugs by Considering

Dependency [Singh V.B.2008]

 By considering different types of bugs lying dormant

in the software, we can write

 1 2 3  a a a a (17) (17)

Where 1a , 2a and
3

a are the initial contents of

simple, hard and complex faults respectively.

Let m(t) represents the mean number of bugs

removed in time t, t t . The value of)(tm can be

written as the superposition of three NHPP to

incorporate the removal of simple, hard and complex

bugs.

       1 2 3  m t m t m t m t (18)

Where  1m t ,  
2

m t and  3m t are the mean value

function of the simple, hard and complex faults

removed in time 0, t .

Modeling Simple Faults

Simple bugs are considered as independent bugs and

the following differential equation can be written to

deal simple bugs:

 
 1

1 1 1

dm t
b a m t

dt
     (19) (19)

Solving equation (19) under the boundary condition

i.e. at  1t 0,m 0 0,  we have

    1 1 11 exp  m t a b t (20) (20)

Equation (20) models the simple fault removal

phenomenon..

Modeling Hard Faults

In case of hard bugs, the debugging time lag can be

more and is expressed in the following differential

equation

 
 

  12
2 2 2

1

m t tdm t
b a m t

dt a


     


 (21)

Here, we define debugging time lag

 t =  1
1

1
log 1b t

b

Solving equation (21) with boundary condition

 2t 0,m 0 0,  we obtain  2m t as

       2
2 2 1 2 1

1

2
1 exp 1 exp 1 exp
  

         
  

b
m t a b t tb b t

b

(22)

Modeling Complex Faults

In case of complex bugs the time lag will be more

than the hard bug because it needs detection,

isolation and removal. It is expressed in the

following equation

 
 

  13
3 3 3

1

m t tdm t
b a m t

dt a


     



(23)

For complex faults debugging time lag is more than

the hard faults. We define the debugging time lag

as follows:

 
2 2

1
1

1

1
log 1

2

  
     
   

b t
t b t

b


Solving equation (23) with boundary condition

 3t 0,m 0 0,  we obtain  3m t as

 

  3
1 1

1

3 3
1

3 1

3
1 1 exp

1 exp

1 1 exp
2

  
      

  
   

                   

b
b t b t

b
m t a

b t
tb b t

 (24)

From equation (18), we get

          

    

 

2
1 1 2 1 2 1

1

3
1 1

1
3

1
3 1

2
1 exp 1 exp 1 exp 1 exp

3
1 1 exp

1 exp (25)

1 1 exp
2

b
m t a b t a b t tb b t

b

b
b t b t

b
a

b t
tb b t

  
             

  

  
    

  
    

            

Where 1 1a ap , 2 2a ap and

 3 3 3 1 21   a ap where p p p

3.4. Modeling Complexity of Bugs by Considering

Testing Effort and Bug Dependency [Singh

V.B.2008]

Testing effort plays an important role during

testing of software. In this section , we have

discussed the modeling of bug complexity by

considering the bug dependency and testing

effort. The following equation expresses the

removal of different types of bugs namely simple,

hard and complex bugs.

 Modeling Simple Faults:

The simple bugs which are considered as

independent can be expressed in the following

equation.

 

 
 1

1 1 1

1
     

dm t
b a m t

dt w t
 (26) (26)

32

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 1 (Maiden Edition), July, 2013

Solving equation (26) under the boundary condition

i.e. at      1t 0,m 0 0, 0 0W t W    we have

     1 1 11 exp   m t a bW t (27)

 here      0  W t W t W

Modeling Hard Faults:

For hard faults that are dependent and can be

removed upon the removal of some leading faults

with a debugging time  W t , we have the

following differential equation:

 

 
 

    12
2 2 2

1

1 
      

m W t W tdm t
b a m t

dt w t a
 (28)

here, we define debugging time lag

 W t =   1
1

1
log 1 b W t

b

Solving equation (28) with boundary condition

     2t 0,m 0 0, 0 0W t W    we obtain

 2m t as

         2
2 2 1 2 1

1

2
1 exp 1 exp 1 exp (29)

b
m t a b W t W t b b W t

b

  
  

           
       

 here,      0W t W t W 

Modeling Complex Faults:

The complex faults which are very difficult to detect

and remove is based on the assumption (8) that these

faults are dependent and can be removed upon the

removal of some leading faults with a debugging

time lag  W t , we have the following differential

equation:

 

 
 

    13
3 3 3

1

1 
      

m W t W tdm t
b a m t

dt w t a

 (30)

For complex faults debugging time lag is more than

the hard faults. We define the debugging time lag as

follows:

    
 

22

1

1

1

1
log 1

2

b W t
W t bW t

b




  
     

  
  

Solving equation (30) with boundary condition

     3t 0,m 0 0, 0   W t W o we obtain

 3m t as

 

     

 
 

 

3
1 1

1

3 3
1

3 1

3
1 1 exp

1 exp (31)

1 1 exp
2

b
b W t b W t

b

m t a
b W t

W t b b W t

 


 

  
      

  
    

    
                  

From equation (18), we get

     
  

    

     

 
 

 

2
1

1
1 1 2

2 1

3
1 1

1

3

1
3 1

2
1 exp

1 exp 1 exp

1 exp

3
1 1 exp

1 exp

1 1 exp
2





 

 


 

        
       
         

        
  

                       

b
bW t

b
m t a bW t a

W t b bW t

b
bW t bW t

b

a
bW t

W t b bW t

 (31)

4. Results and Discussion

The models have been validated using real data sets

and compared on the basis of different comparison

criteria.

Data Set – I: In this data set, over the course of 20

weeks, 10,000 CPU hours were consumed, and 100

software faults were removed . It is cited from

(Wood 1996) from a subset of software products

releases at the Tandem Computers Company.

Data Set – II: The data are cited from (Misra 1983).

Over the course of 38 weeks of testing a real time

system 231 faults were removed.

All the tables have been shown in the appendix.

Table-1(a-b): shows the estimated parameter results

of the existing models (Kapur Younes and Agarwala

1995) for Data Set–I.GE-2, GE-3, GE-4 and GE-5

shows that only two types of faults are lying in the

software and majority of them are of the nth type.

GE-6 estimates the presence of three types of faults

and majority of them are nth type i.e.58 %.(more

complex faults). Logistic removal rate also show that

two types of faults are there and the majority of them

are of the nth type. However, GE-6 with logistic

removal rate estimates almost same value of a

parameter as GE-6 (without logistic removal rate).

Here it gives  =. 12, which shows the highly

exponential nature of the curves. It is observed that

the SRGM with more types of faults provide lower

MSE, Bias, Variation and RMSPE. SRGM with

Logistic removal rate also provide lower MSE, Bias,

Variation and RMSPE with more types of faults.

However, for GE-6 model with logistic removal rate

gives the same R
2
, MSE, Bias, Variation and RMSPE

as GE-6(without logistic removal rate).

Table-2(a-b): shows the estimated parameters and

comparison criteria of the model i.e. equation (25)

and generalized Erlang model (equation 2) for data

set I.

Table-3(a-b): shows the estimated parameters and

comparison criteria of the model i.e. equation (25)

and generalized Erlang model (equation 2). This is

the result for data set II.

 Table-4(a-b) shows the estimated parameters of the

33

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 1 (Maiden Edition), August, 2013

model i.e. equation (31) for various testing effort

functions. Moreover the value of other comparison

criteria like bias, variation and root mean square

prediction error are also described in this table for

data set-I and II.

.5. Conclusion: In this paper we have studied how the

complexity of software bugs can be mathematical modeled.

The paper also categories software bugs into n categories

depending upon their removal time. Bug complexity has

been defined by considering time taken during their

removal, dependency of bugs and testing effort and

correspondingly mathematical models have been developed

to quantify the proportion of bugs in the software. The

model has been successfully tested on several data

sets obtained under different environments ranging

from exponential to S-shaped or mix of the two. It is

shown that the inbuilt model flexibility takes care of

different environment. Categorizing the bugs into

different types where each type is modeled by a

different growth curve helps in making the model

structure flexible and thus capturing wider class of

growth curves. It is observed that introduction of

more bug type‟s increases the flexibility of the model.

Introduction of new parameter 1,2,3ip  i.e. the

proportion of the minor fault, major fault and complex

bugs can help us to improve testing effectiveness. The

values of initial fault contents 1 2 3, ,a a a can be

calculated using ; 1,2,3i ia ap i  . Actually, if a

programmer can act with the knowledge of the

probability distribution of simple faults, hard faults

and complex faults in mind, much time and effort can

be saved, and programmers will have more time to

refine the software based on customer‟s needs or the

company‟s reliability requirements.

ACKNOWLEDGMENTS

We are thankful to Prof. P.K. Kapur, AIB, Amity

University for their support and encouragement.

First author acknowledges with thanks the research

grants received from Department of Science and

Technology (DST), Govt. of India with Grant No.

SR/S4/MS: 600/09.

REFERENCES

Antkiewicz A.P. Wood (1996) “Predicting Software

Reliability”, IEEE Computer, pp.69-77.

Brooks W.D. and Motley, RW (1980) “Analysis of

discrete software reliability models-Technical

Report (RADC-TR-80-84)”, Rome Air

Development Center, New York.

Bittanti S, Bolzern P, Pedrotti E, Scattolini R(1988).

“A flexible modelling approach for Software

reliability growth” Software Reliability

Modelling and Identification (Ed.) G. Goos and

J. Harmanis, Springer Verlag, Berlin, 101-140.

Goel, AL and Okumoto K. (1979) “Time dependent

error detection rate model for software

reliability and other performance measures”

IEEE Transactions on Reliability Vol. R-28 (3)

pp.206-211.

Goswami D.N., Khatri Sunil K.and Kapur

Reecha(2008) “Discrete Software Reliability

Growth Modeling for Errors of Different

Severity incorporating Change-Point Concept”

International Journal of Automation and

Computing Vol. 4(4) pp.396-405.

Kapur P.K., Younes S. and Agarwala S. (1995)

„Generalized Erlang Software Reliability

Growth Model with n types of bugs”, ASOR

Bulletin,14,5-11

Kapur P.K., Bardhan A.K., and Kumar S. (2000)

“On Categorization of Errors in a Software”,

Int. Journal of Management and System, 16(1),

37-38.

Kapur P.K. Kumar Archana ,Yadav Kalpana and

Khatri Sunil(2007) “Software Reliability

Growth Modelling for Errors of Different

Severity using Change Point” International

Journal of Quality ,Reliability and Safety

Engineering ,Vol.14,No.4, pp 311-326.

Kapur P.K. Kumar Archana Singh V.B. and

Nailana F.K.(2007) “ On Modeling Software

Reliability Growth Phenomanon for Errors of

Different Severity” In the Proceedings of

National Conference on Computing for Nation

Development, Bhartiya Vidyapith‟s Institute of

Computer Applications and Management, New

Delhi, pp.279-284, held during 23
rd

-24
 th

February.

Kapur, P.K., Kumar Archana,Yadav, Kalpana and

Kumar Jyotish.(2007), “Incorporating Errors of

Different Severity and Change- Point in Software

Reliability Growth Modeling”. Published in

“Quality, Reliability and Infocom Technology”,

Eds : P.K. Kapur and A. K. Verma, Macmillan

India Ltd., New Delhi.

Kimura M., Yamada S. and Osaki S. (1992)

“Software Reliability Assessment for an

Exponential S-shaped Reliability Growth

Phenomenon” Computers and Mathematics

with Application, 24, pp.71-78.

Musa J.D., et.al. (1987), “Software reliability:

Measurement Prediction, Applications” Mc

Graw Hill, New York.

Ohba M.(1984) “ Software Reliability Analysis

Models” IBM Journal of Research and

Development ,Vol.28,No.4,pp.428-443.

Yamada S., Osaki S and Narithisa H. (1985) “A

Software Reliability Growth Model with Two

Types of Errors” RAIRO; 19, pp. 87-104.

34

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 1 (Maiden Edition), July, 2013

Singh V.B (2008). Ph.D. Thesis “A Study on

Software Reliability Growth modeling Using

Change Point and Fault Dependency”

University of Delhi, India

Yamada S., Ohba M. and Osaki S. (1984) “S-

shaped Software Reliability Growth Models and

their Application” IEEE Tran.

P.K.Kapur, V.B.Singh, and BO Yang(2007)

“Software Reliability Growth Model for

Determining Fault Types” in the proceedings of

3
rd

 International Conference on Reliability and

Safety Engineering (Eds. R.B.Misra, V.N.A.

Naikan, S.K.Chaturvedi, and N.K.Goyal),

Udaipur, 2007, pp. 334-349.

P.K.Kapur, V.B.Singh, and BasirZadeh

Mashaallh(2008), “Considering Errors of

Different Severity in Software Reliability

Growth Modeling using Fault Dependency and

Various Debugging Time Lag Functions” in the

proceedings of Advances in Performance and

safety of complex systems (Eds. A.K.Verma,

P.K.Kapur and S.G. Ghadge) MacMillan India

Ltd, pp. 839-849.

Misra PN. “Software reliability analysis” IB

 System Journal 1983; 22(3): pp 262-270.

 Appendix
 Table 1(a): For Data Set-I

 Table 1(b): For Data Set-I

 Table-2(a): For Data Set-I

 Table-2(b): For Data Set-I

Models

(equation 16)

Parameter Estimates

a b P1 P2 P3 P4 P5 P6 

GE-2 115 .1692 .4580 0.5420 - - - - -

GE-3 108 .2839 .3706 .0000 0.6294 - - - -

GE-4 104 .4033 .3431 .0000 .0000 0.6569

GE-5 102 .5223 .3334 .0000 .0000 .0000 0.6666 - -

GE-6 101 .6123 .3167 .0000 .0000 .1001 .0000 0.5832 -

GE-2(Logistic) 101 .4104 .3825 0.6175 - - - - 33

GE-3(Logistic) 101 .4093 .3932 .0000 0.6068 - - - 20

GE-4(Logistic) 102 .4469 .3777 .0000 .0000
0.6223

- - 11

GE-5(Logistic) 102 .5259 .3434 .0000 .0000 .0000 0.6566 2

GE-6(Logistic) 101 .6117 .3170 .0000 .0000 .1018 .0000 0.5812 .12

Models
Models(equation 16)

 Comparison Criteria

R2 MSE Bias Variation RMSPE

GE-2 .98798 9.7684 -0.3890 10.1268 10.1343

GE-3 .99200 6.5075 -0.2938 6.7591 6.7655

GE-4 .99596 3.2817 -0.1760 3.4218 3.4263

GE-5 .99804 1.5908 -0.0663 1.6699 1.6712

GE-6 .99832 1.36352 -0.0265 1.4345 1.4347

GE-2(Logistic) .99781 1.78217 -0.0814 1.8689 1.8707

GE-3(Logistic) .99790 1.70375 -0.0702 1.7882 1.7896

GE-4(Logistic) .99794
1.67833

-0.0517 1.7638 1.7646

GE-5(Logistic) .99813 1.51636 -0.0428 1.5942 1.5948

GE-6(Logistic) .99832
1.36345

-0.0265 1.4344 1.4347

Models Parameter Results

a b1 b2 b3 P1 P2 P3

Equation 2 562 .0215 .0121 .0407 . 6407 .3420 .0173

Equation 25 503 .0220 .0664 .6845 . 6407 .3420 .0173

Models Comparison Criteria

R2 MSE Bias Variation RMSPE

Equation 2 .99469 19.7059 -0.7567 4.4328 4.4970

Equation 25 .99644 13.2276 0.1208 3.6837 3.6857

35

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 1 (Maiden Edition), August, 2013

 Table-3(a): For Data Set-II

 Table 3(b): For Data Set-II

 Table 4(a): For Data Set-I

 Table 4(b): For Data Set-II

A publication of Covenant University Journals: journals.covenantuniversity.edu.ng

Models Parameter Results

a b1 b2 b3 P1 P2 P3

Equation 2 142 .3244 .0015 .2839 .2627 .2334 0.5039

Equation 25 103 .1289 .6789 .4005 .2501 .5744 0.1755

Models Comparison Criteria

R2 MSE Bias Variation RMSPE

Equation 2 .99249 6.1092 -0.2310 2.5247 2.5353

Equation 25 .99854 1.1908 -0.0005 1.1195 1.1195

Testing Effort

Functions

Parameter Results of Model (equation 31)

A b1 b2 b3 p1 p1 p3

Exponential 102 .0001 .0020 .0004 .0733 .6746 0.2521

Rayleigh 122 .0001 .0005 .0052 .4807 .3591 0.1602

Weibull

111

.0001 .0013 .0018

.4256

.4148 0.1596

Logistic 114 .0003 .0004 .0026 .5044 .3615 0.1341

Testing Effort

Functions

Comparison criteria

R2 MSE Bias Variation RMSPE

Exponential .99848 1.2324 -0.007 1.1389 1.13901

Rayleigh .99866 1.0861 0.0001 1.0692 1.0692

Weibull .99830 1.3845 0.0005 1.2072 1.2072

Logistic .99868 1.0728 0.001 1.0626 1.0626

 36

http://www.journals.covenantuniversity.edu.ng/

