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Abstract: During testing of software, most of the bugs lying dormant in the software gets uncovered once the test cases are 

executed. Different bugs may take different amounts of effort and expertise for their removal. To understand the complexity 

of bugs from a developer‟s perspective, researchers have developed different mathematical models. Software consists of two 

types of bugs, dependent and independent. Dependent bugs are those whose removal depends upon the removal of some 

other bugs on which it is dependent. Dependency of bugs also makes the bug complex and bugs will take more time during 

fixing. Different debugging time lags functions have been taken to model different complexity of bugs. The aim of this paper 

is to study the bugs of different complexity. The complexity of bugs has been also modeled using dependency concept. 

Testing effort dependent bug complexity model using fault dependency has been also discussed. We also feel that that more 

complex bug will take more time and less complex bug will take less time during fixing. During removal of bugs, the 

removal team gets more familiar with the code during the fixing. The learning effect during testing has been incorporated 

using logistic removal rate.  The models are validated based on different comparison criteria namely MSE, R
2
 , Bias, 

Variation and Root mean squared error.  
 

Keywords/Index Terms: Non-homogeneous Poisson process, bug complexity, bugs types. 
 

1. INTRODUCTION 

During last four decades software reliability growth 

models have been used to measure the reliability 

growth and testing progress of software.  (Musa 1987) 

defined software reliability as probability of failure 

free operation of the software in a fixed environment 

for a fixed interval of time. The fitting of software 

reliability growth models also depends upon the 

nature of failure data which is either of exponential or 

S-shaped nature or mixed of the two. On the same 

line, software reliability growth models that measure 

reliability growth of the software belongs to either of 

the two categories - Exponential and S-shaped. In 

software simple bugs are detected and removed in an 

exponential fashion. In an exponential growth curve, 

it is  assumed that the error removal intensity is 

linearly related to the remaining number of software 

errors. The causes of S-shapedness are many and have 

been discussed by (Yamada, Ohba and Osaki 1984, 

Ohba 1984, Bittanti, Bolzern, Pedrotti and Scattolini 

1988) and others. Software team which deals the 

removal process also learn and their skill grow. In 

reality, it has been observed that any software system 

may contain different types of bugs. Some bug affects 

the functionality of software and users gives different 

levels of severity which ranges from cosmetics, minor 

, major and critical. These bugs may take different 

amounts of time for their removal. When a developer 

wants to fix the bugs, the bugs may take less time or 

more time and it only depends upon the complexity of 

bugs. We define the complexity of bugs in terms of 

time taken during removal. Bugs are detected , 

isolated then removed or fixed. Some bugs take more 

time while others takes less time. This is a question 

why a bug takes more time or less time. And the 

answer is it depends how the bug is complex means 

what is their dependency, environmental impact and 

link to another module or functions. We need to treat 

different complexity of bugs with different strategy. A 

study in bugs complexity and their categorization is 

done by many researchers [(Obha 1984, (Yamada, 

Osaki and Narithisa 1985), (Kimura, Yamada and 

Osaki 1992) . Different types of growth models have 

been developed, namely, exponential, hyper 

exponential , exponential S-shaped model to capture 

different types of bugs present in the software.   

Of late different researchers worked in this area and 

touched the depth concept of bug complexity. (Kapur, 

Younes and Agarwala 1995) developed a generalized  

Erlang SRGM to classify the bugs in the software 

system as simple, hard and complex with the 

assumption that the time delay between the failure 

observation and its removal represent the complexity 

of bugs. Implicit categorization of faults based on the 

time of detection of the fault has been discussed by 

(Kapur, Bardhan and Kumar 2000). Now, it is clear 

from literature survey that an SRGM should explicitly 

define the different types of faults due to the fact that 

any type of fault can be detected at any point of 

testing time. Thus, it is clear that modeling the bug 

complexity will help in resource management and 

provides an ease to project managers during testing or 

in the operational phase. In this paper a study has 

been conducted on mathematical modeling of 

software bug complexity which categories bugs into 

different categories depending upon the time they take 
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in fixing. Bug complexity has been defined by 

considering the time they take means failure detection 

and removal, the learning of the testing team, bug 

dependency and testing effort with bug dependency. 

Various debugging time lags functions have been 

taken for different types of bugs  

It has been assumed that simple faults can be 

independently removed (termed as leading faults) and 

debugging time lag assumed to be negligible. Hard 

faults take more time in fixing due to the fact that  it is 

assumed that they are dependent faults, whose 

removal is dependent on the removal of some leading 

faults. Hard faults cannot be immediately removed 

but lag the fault detection process by a debugging 

time lag / delay effect factor  t . Complex faults 

takes more time in removal as they are more 

dependent on other bugs and also assumed to be 

dependent faults, whose removal is also dependent on 

the removal of some leading faults. Complex faults 

need more debugging time lag than hard bugs by a 

debugging time lag / delay effect factor  t . But, in 

the case of complex faults debugging time lag is more 

in comparison to the hard faults. 

2. Basic Assumption 

An SRGM based on NHPP can be formulated as a Poisson 

process: 

 
 

  2,1,0,)(exp
!

)(
)(Pr  ntm

n

tm
ntN

n  (1) 

And  
 
t

0

dx)x()t(m  

 

Here, the  expected no. of bugs is  tN , and mean value 

function is   tm The intensity function λ(x) (or the mean 

value function m(t)) is the basic building block of all the 

NHPP models existing in the software reliability 

engineering literature.  

1. The non homogeneous poison process has been used to 

model the bug detection /removal phenomenon. 

2. Remaining bugs lying dormant in the software cause 

failures. 

3. n types of  bugs existing in the software and each type 

of bug is modeled by a different growth curve. 

4. Each time when a failure is observed, an immediate 

(delayed) effort is taken to decide the cause of the 

failure and remove the corresponding bug. 

5. No bug generation has been considered in the paper. 

6. The bug removed in  ,t t t is proportional to the 

expected number of bugs remaining to be 

removed. 

3.  Software Reliability Growth Modeling 

In this section we study software reliability growth model, 

which determines the types of bug and their proportion 

present in the software based on their complexity. We 

have also discussed the  logistic removal rate for different 

types of bugs present in the software system. Dependency 

based models have been also discussed. 

3.1. Generalized Erlang Software Reliability Growth 

Model[Kapur et al. 1995] 

 This model is a generalized model and provides the 

proportion of different types of bugs lying in the software 

Kapur et al.[9] . It is also assumed that different types of 

bugs exists in the software and  may take different amount 

of time and follows different growth curves.  

   
 1

1 0

1 exp
!

j
n i

i

i i

i j

b t
m t a b t

j



 

  
    
    

  (2) 

 m t  :mean value function of the expected 

number of detected/removed bugs     the 

time interval ],0[ t  

i   : Type of bug 

ip   : proportion of type i bugs 

 i ia ap  : initial content of type i bug 

 ifm t : mean numbers of failure caused by  i bugs 

in time t. 

 iism t  : mean number of type i bugs isolated in 

time t    

 im t  : mean number of type i bugs removed in time t. 

b1    2 2,d t d t   : bug removal rate per bug for type 1, 

type 2, and type 3. 

   i           :  constant (for i =2 to n type of bugs) 

  j            : the number of stages required to 

remove the bug after its failure 

observation/bug   detection ( j is 

dependent upon the type of bug) 

GE-n      : model with n type of bugs. 

3.2. Modeling Complexity of Bugs by Considering 

Learning [Singh V.B.2008] 

Different types of bugs are depicted by different 

types of curve. Here assumption is removal 

growth of type 1 bug which is simple in nature 

follows exponential curve. For other bugs, which 

are more, sever in nature, we incorporate logistic 

learning during removal phenomenon and these 

bugs are depicted by different types of S-shaped 

curves. In the beginning, we assume that only 

three types of bugs exist in software type 1, type 3 

and type 3 (simple, hard and complex namely) 

and later, we extend our modeling to n types of 

bug.   

Assuming 1a , 2a and 
3

a  to be simple, hard and 

complex bugs in a software system 

( 1 2 3a a a a   ), the simple bug removal process 

is modeled by the following 

 1dm t

dt
 =   1 1 1b a m t   (3) 

1( )m t is the number of simple bugs removed.Solving 

equation (3) with the initial condition 1(0) 0m  , we 

get: 
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  1 1 1( ) 1 expm t a b t      (4) 

The hard bugs removal process is modeled as a two-

stage process, 

 2 fdm t

dt
 =  2 2 2( fb a m t   (5) 

     

 2dm t

dt
 = 

 
   2

2 2

2 2

( )
1 exp

f

b
m t m t

b t


 
  (6) 

Here we assume that learning of removal team grows 

as testing progresses and follows logistic removal 

rate.    

Solving equation (5) and (6) with the initial 

condition 2 2(0) 0, (0) 0fm m  , we get: 

    
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b t b t
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 
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Here  2 fm t  denotes the number of failures observed 

in time t whereas  2m t  represents the number of bugs 

removed in time t. 

 The complex bug removal process is modeled as a 

three-stage process, 

 3 fdm t

dt
 =  3 3 3( fb a m t    (8) 
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In a practical scenario, the removal rate follows 

logistic as learning of the removal team grows as 

testing progresses and Solving equation (8), (9) and 

(10) with the initial 

condition 3 3 3(0) 0, (0) 0 (0) 0f ism m and m   , we get: 
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Here, 2 ( )m t  and 3 ( )m t  are expressed by delayed S-

shaped and 3-stage Erlang growth curves with logistic 

removal rates. The removal rates for simple , hard and 

complex bugs are given as 1b  , 
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respectively. 

It is seen that 2b  and 3b equal to 1b in long run. The 

removal rates for three types of bugs become 1b  
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ively. 

We also note that  
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, Which is in accordance with the severity of bugs. 

The mean value function of the proposed SRGM is  

       1 2 3m t m t m t m t     

      

Where  
1

m t  is the mean value function of the simple 

bugs removed in time  0, t ,   
2

m t  is the mean value 

function of the hard bugs removed in time  0, t  and 

 tm3  is the mean value function of the complex bugs 

removed in time  0, t . 
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Assuming 1 2 3 ,b b b b    we have 
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The model described above can be generalized to n 

different types of bugs depending upon their severity.  
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Model described in above equation determines the 

type of bugs present in a software with a logistic 

removal rate and is abbreviated as GE-n (Logistic). 

If i =0 , above model reduces to equation (2).   

Assuming 1 2 3 ... nb b b b b     . We also assume 

that the value of   remaining same for different types 

of bug from estimation view. We have 

    
  

 
 1

1 1

2 0

1
1 exp 1 exp (16)

!1 exp

jn i

i

i j

bt
m t a b t a bt

jbt



 

  
        

      
 

 

 

31 



Covenant Journal of Informatics and Communication Technology (CJICT)                       Vol. 1, No. 1 (Maiden Edition), August, 2013 

 

 

 

3.3. Modeling Complexity of Bugs by Considering 

Dependency [Singh V.B.2008]  

 By considering different types of bugs lying dormant 

in the software, we can write 

          1 2 3  a a a a                        (17)             (17) 

Where 1a , 2a and 
3

a  are the initial contents of 

simple, hard and complex faults respectively.  

Let m(t) represents the mean number of bugs 

removed in time t, t t . The value of )(tm can be 

written as the superposition of three NHPP to 

incorporate the removal of simple, hard and complex 

bugs. 

       1 2 3  m t m t m t m t          (18) 

Where  1m t ,  
2

m t and  3m t  are the mean value 

function of the simple, hard and complex faults 

removed in time 0, t . 

 

Modeling Simple Faults 

Simple bugs are considered as independent bugs and 

the  following differential equation can be written to 

deal simple bugs:                                                                                                            

 
 1

1 1 1

dm t
b a m t

dt
                              (19)              (19) 

 

Solving equation (19) under the boundary condition 

i.e. at  1t 0,m 0 0,  we have  

    1 1 11 exp  m t a b t                           (20)     (20) 

Equation (20) models the simple fault removal 

phenomenon.. 

Modeling Hard Faults 

In case of hard  bugs, the debugging time lag can be 

more and  is expressed in the following differential 

equation 

 
 
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2 2 2
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m t tdm t
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
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
           (21)       

Here, we define debugging time lag    

 t =  1
1

1
log 1b t

b
    

    

Solving equation (21) with boundary condition    

 2t 0,m 0 0,   we obtain  2m t  as  

       2
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(22)                                                                           

Modeling Complex Faults 

In case of complex bugs the time lag will be more 

than the hard bug because it needs detection, 

isolation and removal. It is expressed in the 

following equation  

 
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(23)               

   

For complex faults debugging time lag is more than 

the hard faults. We define the debugging time lag 

as follows: 
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Solving equation (23) with boundary condition 

 3t 0,m 0 0,   we obtain  3m t   as  
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From equation (18), we get 
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Where 1 1a ap , 2 2a ap and 

 3 3 3 1 21   a ap where p p p

 

 

3.4. Modeling Complexity of Bugs by Considering 

Testing Effort and Bug Dependency [Singh 

V.B.2008] 

Testing effort plays an important role during 

testing of software. In this section , we have 

discussed the modeling of bug complexity by 

considering the bug dependency and testing 

effort. The following equation expresses the 

removal of different types of bugs namely simple, 

hard and complex bugs. 

 Modeling Simple Faults: 

The simple bugs which are considered as 

independent can be expressed in the following 

equation.  

 

 

 
 1

1 1 1

1
     

dm t
b a m t

dt w t
         (26)    (26)           
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Solving equation (26) under the boundary condition 

i.e. at      1t 0,m 0 0, 0 0W t W    we have  

     1 1 11 exp   m t a bW t        (27)         

 here         0  W t W t W  

Modeling Hard Faults: 

For hard faults that are dependent and can be 

removed upon the removal of some leading faults 

with a debugging time  W t  , we have the 

following differential equation: 

 

 
 

    12
2 2 2

1

1 
      

m W t W tdm t
b a m t

dt w t a
     (28)    

here, we define debugging time lag 

 W t =   1
1

1
log 1 b W t

b
 

Solving equation (28) with boundary condition 

     2t 0,m 0 0, 0 0W t W     we obtain 

 2m t  as  

 

         2
2 2 1 2 1

1

2
1 exp 1 exp 1 exp (29)

b
m t a b W t W t b b W t

b

  
  

           
       

 here,      0W t W t W   

Modeling Complex Faults: 

The complex faults which are very difficult to detect 

and remove is based on the assumption (8) that these 

faults are dependent and can be removed upon the 

removal of some leading faults with a debugging 

time lag  W t  , we have the following differential 

equation: 

 

 
 

    13
3 3 3

1

1 
      

m W t W tdm t
b a m t

dt w t a

        (30)                          

For complex faults debugging time lag is more than 

the hard faults. We define the debugging time lag as 

follows: 

    
 

22

1

1

1

1
log 1

2

b W t
W t bW t

b




  
     

  
  

 

Solving equation (30) with boundary condition 

     3t 0,m 0 0, 0   W t W o  we    obtain 

 3m t  as  

   

 

     

 
 

 

3
1 1

1

3 3
1

3 1

3
1 1 exp

1 exp (31)

1 1 exp
2

b
b W t b W t

b

m t a
b W t

W t b b W t

 


 

  
      

  
    

    
                  

     

                                                                                 

From equation (18), we get 

     
  

    

     

 
 

 

2
1

1
1 1 2

2 1

3
1 1

1

3

1
3 1

2
1 exp

1 exp 1 exp

1 exp

3
1 1 exp

1 exp

1 1 exp
2





 

 


 

        
       
         

        
  

                       

b
bW t

b
m t a bW t a

W t b bW t

b
bW t bW t

b

a
bW t

W t b bW t

      (31) 

4. Results and Discussion  

The models have been validated using real data sets 

and compared on the basis of different comparison 

criteria. 

Data Set – I: In this data set, over the course of 20 

weeks, 10,000 CPU hours were consumed, and 100 

software faults were removed . It is cited from 

(Wood 1996) from a subset of software products 

releases at the Tandem Computers Company. 

Data Set – II: The data are cited from (Misra 1983). 

Over the course of 38 weeks of testing a real time 

system 231 faults were removed. 

All the tables have been shown in the appendix. 
 

Table-1(a-b): shows the estimated parameter results 

of the existing models (Kapur Younes and Agarwala 

1995) for Data Set–I.GE-2, GE-3, GE-4 and GE-5 

shows that only two types of faults are lying in the 

software and  majority of them are of the nth type. 

GE-6 estimates the presence of three types of faults 

and majority of them are nth type i.e.58 %.( more 

complex faults). Logistic removal rate also show that 

two types of faults are there and the majority of them 

are of the nth type. However, GE-6 with logistic 

removal rate estimates almost same value of a 

parameter as GE-6 (without logistic removal rate). 

Here it gives  =. 12, which shows the highly 

exponential nature of the curves. It is observed that 

the SRGM with more types of faults provide lower 

MSE, Bias, Variation and RMSPE. SRGM with 

Logistic removal rate also provide lower MSE, Bias, 

Variation and RMSPE with more types of faults. 

However, for GE-6 model with logistic removal rate 

gives the same R
2
, MSE, Bias, Variation and RMSPE 

as GE-6(without logistic removal rate). 

Table-2(a-b): shows the estimated parameters and 

comparison criteria of the model i.e. equation (25) 

and generalized Erlang model (equation 2) for data 

set I.   

Table-3(a-b): shows the estimated parameters and 

comparison criteria of the model i.e. equation (25) 

and generalized Erlang model (equation 2). This is 

the result for data set II. 

 Table-4(a-b) shows the estimated parameters of the 
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model i.e. equation (31) for various testing effort 

functions. Moreover the value of other comparison 

criteria like bias, variation and root mean square 

prediction error are also described in this table for 

data set-I and II.  

 

.5. Conclusion: In this paper we have studied how the 

complexity of software bugs can be mathematical modeled. 

The paper also categories software bugs into n categories 

depending upon their removal time. Bug complexity has 

been defined by considering time taken during their 

removal, dependency of bugs and testing effort and 

correspondingly mathematical models have been developed 

to quantify the proportion of bugs in the software. The 

model has been successfully tested on several data 

sets obtained under different environments ranging 

from exponential to S-shaped or mix of the two.  It is 

shown that the inbuilt model flexibility takes care of 

different environment. Categorizing the bugs into 

different types where each type is modeled by a 

different growth curve helps in making the model 

structure flexible and thus capturing wider class of 

growth curves. It is observed that introduction of 

more bug type‟s increases the flexibility of the model.  

Introduction of new parameter 1,2,3ip   i.e. the 

proportion of the minor fault, major fault and complex 

bugs can help us to improve testing effectiveness. The 

values of initial fault contents 1 2 3, ,a a a  can be 

calculated using ; 1,2,3i ia ap i  . Actually, if a 

programmer can act with the knowledge of the 

probability distribution of simple faults, hard faults 

and complex faults in mind, much time and effort can 

be saved, and programmers will have more time to 

refine the software based on customer‟s needs or the 

company‟s reliability requirements. 
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                      Table 1(a): For Data Set-I 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                       Table 1(b): For Data Set-I 
 

 

 

 

 

 

 

 

 

 

 

        

 
 

 
 

                Table-2(a): For Data Set-I 
 

 

 

 

 

 

 

 
 
 

 

 

                      Table-2(b): For Data Set-I 
 

 

 

 

 

                    

Models 

(equation 16) 

Parameter Estimates 

a b P1 P2 P3 P4 P5 P6   

GE-2 115 .1692 .4580 0.5420 - - - - - 

GE-3 108 .2839 .3706 .0000 0.6294 - - - - 

GE-4 104 .4033 .3431 .0000 .0000 0.6569    

GE-5 102 .5223 .3334 .0000 .0000 .0000 0.6666 - - 

GE-6 101 .6123 .3167 .0000 .0000 .1001 .0000 0.5832 - 

GE-2(Logistic) 101 .4104 .3825 0.6175 - - - - 33 

GE-3(Logistic) 101 .4093 .3932 .0000 0.6068 - - - 20 

GE-4(Logistic) 102 .4469 .3777 .0000 .0000 
0.6223 

- - 11 

GE-5(Logistic) 102 .5259 .3434 .0000 .0000 .0000 0.6566    2 

GE-6(Logistic) 101 .6117 .3170 .0000 .0000 .1018 .0000 0.5812 .12 

Models 
Models(equation 16) 

    Comparison Criteria  

R2 MSE Bias Variation RMSPE 

GE-2 .98798 9.7684 -0.3890 10.1268 10.1343 

GE-3 .99200 6.5075 -0.2938 6.7591 6.7655 

GE-4 .99596 3.2817 -0.1760 3.4218 3.4263 

GE-5 .99804 1.5908 -0.0663 1.6699 1.6712 

GE-6 .99832 1.36352 -0.0265 1.4345 1.4347 

GE-2(Logistic) .99781 1.78217 -0.0814 1.8689 1.8707 

GE-3(Logistic) .99790 1.70375 -0.0702 1.7882 1.7896 

GE-4(Logistic) .99794 
1.67833 

-0.0517 1.7638 1.7646 

GE-5(Logistic) .99813 1.51636 -0.0428 1.5942 1.5948 

GE-6(Logistic) .99832 
1.36345 

-0.0265 1.4344 1.4347 

Models Parameter Results 

a b1 b2 b3 P1 P2 P3 

Equation 2 562 .0215 .0121 .0407 . 6407 .3420 .0173 

Equation 25 503 .0220 .0664 .6845 . 6407 .3420 .0173 

Models Comparison Criteria 

R2 MSE Bias Variation RMSPE 

Equation 2 .99469 19.7059 -0.7567 4.4328 4.4970 

Equation 25 .99644 13.2276 0.1208 3.6837 3.6857 
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                  Table-3(a): For Data Set-II 
 

 

 

 

 

 

 

 

 

                  Table 3(b): For Data Set-II 
 

 

 

 

 

 

 

 

 

 

                      Table 4(a): For Data Set-I 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

                       Table 4(b): For Data Set-II 
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Models Parameter Results 

a b1 b2 b3 P1 P2 P3 

Equation 2 142 .3244 .0015 .2839 .2627 .2334 0.5039 

Equation 25 103 .1289 .6789 .4005 .2501 .5744 0.1755 

Models Comparison Criteria 

R2 MSE Bias Variation RMSPE 

Equation 2 .99249 6.1092 -0.2310 2.5247 2.5353 

Equation 25 .99854 1.1908 -0.0005       1.1195 1.1195 

Testing Effort 

Functions 

 

 

Parameter Results of  Model (equation 31) 

 

A b1 b2 b3 p1 p1 p3 

Exponential 102 .0001 .0020 .0004 .0733 .6746 0.2521 
 

Rayleigh 122 .0001 .0005 .0052 .4807 .3591 0.1602 

 

Weibull 

 

111 
 

.0001 .0013 .0018 
 

.4256 
 

.4148 0.1596 
 

 

Logistic 114 .0003 .0004 .0026 .5044 .3615 0.1341 
 

Testing Effort 

Functions 

 

 

Comparison criteria 

R2 MSE Bias Variation RMSPE 

Exponential .99848 1.2324 -0.007 1.1389 1.13901 

Rayleigh .99866 1.0861 0.0001 1.0692 1.0692 

Weibull .99830 1.3845 0.0005 1.2072 1.2072 

Logistic .99868 1.0728 0.001 1.0626 1.0626 
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