
Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 1 (Maiden Edition), July, 2013

Abstract—Traditional way of software engineering is no longer fully suitable in the changing scenario of modern hardware
and software architecture of parallel and distributed computing on Semantic web and Cloud computing platform. A parallel
hardware architecture can support high performance computing but needs changes in programming style. Also the capability
of Semantic web can link everything on the internet making an interoperable intelligent system. And with this capability
many beneficial business models like Web services and Cloud computing platform have been conceptualized. Cloud
computing is the most anticipated future trend of computing. These changes in hardware and software architecture means we
need to re-visit the traditional software engineering process models meant for a single computer system. This paper first
surveys the evolution of hardware architecture, newer business models, newer software applications and then analyses the
need for changes in software engineering process models to leverage all the benefits of the newer business models. This
paper also emphasizes the vulnerability of the web applications and cloud computing platform in terms of risk management
of web applications in general and privacy and security of customer information in shared cloud platform which may
threaten the adoption of the cloud platform.

Keywords/Index Terms— Agile Process Model , Cloud Computing Platform, Privacy and Security Issues, Risk
Management, Semantic Web, Software Evolution.

1. INTRODUCTION: CHANGES IN HW
INFRASTRUCTURE

Since the inception of computers in the 1950’s
hardware technologies have improved rapidly and cost
of computing has become cheaper. Rapid changes of
hardware technologies in all fronts like CPU, memory,
hard disk, communication network and embedded
systems made requirements for diversified software
applications. In 1950’s software program was for a
particular hardware platform and a super computer will
serve to scientific computations only for big
companies with million dollars contract. These super
computers were expensive and needed large floor area,
electricity consumption and large number of
administrative staff. Thus cost of computing was very
high in those days. Programmers used these super
computers on a time sharing basis and used machine
codes to write their programs and job control
languages to run their programs. Then from 1970’s
came the era of minicomputers and desktop computers
where business applications will be installed in-house
for a company and several end-users will operate it.
Customer call-centers were established so that
customers can get the required services through the
end users of these business applications.
 Since the inception of World Wide Web by Tim
Barner Lee’s in 1990’s (Christian Bizer et al. 2012),
business applications can be accessed over the internet

by the customers themselves for getting the required
services. Also many applications can be downloaded
from the internet to run on one’s personal computer.
Not only big businesses, many individuals and home
grown businesses had their web presence either for
information sharing, social networking or for e-
commerce. They designed their web applications ad-
hoc with scripting languages like HTML, XML, Java
Script, PHP, ASP etc. These web applications are
designed quickly by armatures and not by IT
professionals following SW engineering processes
models and thus are of poor quality. This era also gave
rise to pervasive and ubiquitous computing with
several smart embedded systems with very tiny
computers embedded in small hand-held and portable
devices requiring no human interactions but still
providing complex intelligent services.
 Now a day many commercial applications as well as
scientific applications need to process huge amount of
data real time with complex algorithms for modeling
and simulation purposes requiring more processing
power of the computers. Advancement in network
infrastructure made parallel and distributed computing
a norm instead of sequential processing by a single
computer. These high processing computing (HPC)
needs can also be supported by application specific
integrated circuit (ASIC) or reconfigurable field
programmable gate array (FPGA) platform as process
technology can integrate huge number of high speed

Evolution of Software Engineering in the
Changing Scenario of Modern Hardware
Architecture, Semantic Web and Cloud

Computing Platform

Radha Guha
 PES Institute of Technology/Bangalore, India

 radhaguha@pes.edu

22

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 1 (Maiden Edition), July, 2013

transistors on the same chip where a number of
processors can be configured to run concurrently.
 With this changing scenario of hardware
infrastructure, requirements for various software
delivery architectures have emerged. Thus traditional
SW process models are needed to be updated which is
the topic of this paper. Section II highlights the
emergence of newer business models for application
delivery. Section III highlights the evolvement of
generation of programming languages. Section IV
emphasizes the importance of quality software
development in today’s economy and explores
traditional SW processing models. Section V analyzes
need for newer SW process models. Section VI
concludes the paper.

2. SEMANTIC WEB AND CLOUD COMPUTING

PLATFORM
Tim Barner Lee’s vision of the development of
Semantic Web or Web 3.0 (Handler et al., 2008; Brand
Niemann et al., 2005; Erin Cavanaugh, 2006) can
transform the World Wide Web into an intelligent web
system of structured, linked data which can be queried
and inferred as a whole by the computers themselves.
This Semantic Web capability is materializing many
innovative use of the web such as hosting Web
services and the cloud computing platform.
Applications can be hosted on the web and accessed
via Internet by geographically dispersed clients. These
XML (eXtensible Markup Language) based,
interoperable applications are called Web Services
which can publish their location, functions, messages
containing the parameter list to execute the functions
and communication protocols for accessing the service
for using them correctly by all. As the same service
will be catered to multiple clients they can even be
customized according to clients’ likes. Application
architecture and delivery architecture will be two
separate layers for these web applications for
providing this flexibility. XML based Web 2.0 and
Web 3.0 protocols like Service Oriented Architecture
(SOA), Simple Object Access Protocol (SOAP), Web
Service Description Language (WSDL) and Universal
Description, Discovery and Integration (UDDI)
registry are designed to discover Web Services on-the-
fly and to integrate applications developed on
heterogeneous computing platforms, operating systems
and with varieties of programming languages.
 In another business model, the application
development infrastructure like processors, storage,
memory, operating system and application
development tools and software can all be delivered as
utility to the clients over the Internet instead of clients
owning them permanently. This is what is dubbed as
cloud computing (Duane Nickull et al., 2007; Sun
Microsystem, 2009; Sun Microsystem, 2012; Radha
Guha et al., 2010; Radha Guha, 2013) where a huge

pool of physical resources hosted on the web will be
shared by multiple clients as and when required.
Because of the many benefits of this business model
like no capital expenditure, speed of application
deployment, shorter time to market, lower cost of
operation and easier maintenance of resources for the
clients, cloud computing may be the prevalent computing
platform of the future.

3. GENERATIONS OF PROGRAMMING

LANGUAGES
Over the years many programming languages have
evolved to have better programming style and manage
complexity of larger program. In the beginning i.e. in
1950’s assembly language which is symbolic binary
machine code were used to write hardware specific
code. This can be identified as first generation of
programming language. One benefit of hardware
specific assembly language is that it is very efficient in
its performance as it can fine-tune its operation on a
specific hardware. But the problem with machine code
is that it is not human readable. It is extremely
laborious to write a program with machine code and
thus is error prone.
 Problems using machine codes gave rise to high
level programming languages which is easy to
understand and manageable by the programmers.
Programs became much larger and more complex than
that in the previous generation. System software and
application software needed to be segregated to make
things more manageable. Where system software
known as the operating system managed the hardware
resources more efficiently, application software took
care of the business needs.
 Second generation of programming languages are all
high level languages to make it human readable and
more manageable. Fortran (Formula Translation) was
the first high level human readable imperative
language designed in 1950’s which needed a compiler
to translate it to machine code. Fortran was mainly for
scientific computations. Other second generation
languages that evolved in 1950’s were LISP (list
programming), COBOL (COmmon Business Oriented
Language) and ALGOL (ALGOrithmic Language).
Though these languages were high-level, they were
still dependent on hardware domain and flow of
control of these languages were with “jump”, “goto”
statements and was loopy. Also there were no
construct for recursion and local variables. Dynamic
memory creation was also not an option. LISP had
recursion. In 1960’s ALGOL60 and BASIC
(Beginner’s All-purpose Symbolic Instruction Code)
were developed.
 In third generation programming languages the
program was structured with hierarchy of blocks and
function calls. Code reuse was possible because of the
sub-routines or function calls. Programmers had to
write fewer amounts of codes and thus made fewer

23

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 1 (Maiden Edition), July, 2013

mistakes. All previous generation of programming
languages were retrofitted to incorporate this
structured programming feature. In 1970’s PROLOG
(PROgramming LOGic) was developed as a logic
processing language. Mid-level programming language
C was developed for structured programming with
function calls to reuse code. In C language it is also
possible to use assembly code and so it is called mid-
level language. To manage the complexity of large
program object oriented programming (OOP) concept
was proposed in Simula67. Later in 1980’s C language
was extended to C++ to incorporate OOP concepts like
abstraction, encapsulation, inheritance, polymorphism
to enhance code reuse and better organizing a program.
 In 1990’s many fourth generations programming
languages were designed for reducing programmer’s
effort further and to reduce software development cost.
Unlike the general purpose languages of third
generation these fourth generations programming
languages are for specific domains such as database
query language SQL, Oracle Forms, report generator,
Visual Basic, GUI creator, FoxPro and web
development languages. They are often used for
business development quickly such as with Visual
Basic, PowerBuilder and ColdFusion in the front end
and SQL for connecting to the backend database. With
the popularity of Internet many scripting languages are
developed. These are JavaScript, ASP, (application
server pages), VBScript, Python, PHP etc.

4. SOFTWARE IS INDISPENSIBLE
Economies of all developed countries depend on
quality software and today software cost is more than
hardware cost. Over the last half-century rapid
advances of hardware technology such as computers,
memory, storage, communication networks, mobile
devices and embedded systems is pushing the need for
larger and more complex software. Systems like
manufacturing, monitoring, surveillance, computer
aided design, diagnosis and various other decision
support systems are software controlled. Thus cost of
software failure is dire. Software development not only
involves many different hardware technologies, it also
involves many different parties like customers,
stakeholders, end users and software developers.
That’s why software development is an inherently
complex procedure. Because of the involvement of
many parties, software development is inherently a
complex process and most of the software projects fail
because of lack of communication and coordination
between all the parties involved.
 Knowledge management in software engineering
has always been an issue which affects better software
development and its maintenance. There is always
some gap in understanding about what the business
partners and stakeholders want; how software
designers and managers design the modules and how
software developers implement the design. As the time

passes, this gap in understanding increases due to the
increased complexity of involvement of many parties
and continuously changing requirements of the
software. This is more so at the later stage when the
software has to be maintained and no one has the
comprehensive knowledge about the whole system. In
the next section we delve into existing software
development methodologies first to develop quality
software products in traditional environment not
involving Web Services and cloud computing
platform.
4.1. Traditional Software Engineering Process
Since 1968 software developers had to adopt the
engineering disciplines i.e. systematic, disciplined and
quantifiable approach to make software development
more manageable to produce quality software
products. The success or quality of a software project
is measured by whether it is developed within time and
budget and by its efficiency, usability, dependability
and maintainability (M. Brambilla et al., 2006; R.
Presman, 2009; Sommerville, 2006; Salesforce.com,
2009).
 Software engineering starts with an explicit process
model having framework of activities which are
synchronized in a defined way. This process model
describes or prescribes how to build software with
intermediate visible work products (documents) and
the final finished product i.e. the operating software.
The whole development process of software from its
conceptualization to operation and retirement is called
the software development life cycle (SDLC). SDLC
goes through several framework activities like
requirements gathering, planning, design, coding,
testing, deployment, maintenance and retirement.
Software requirements are categorized as functional,
contractual, safety, procedural, business and technical
specification. Accuracy of requirements gathering is
very important as errors in requirement gathering will
propagate through all other subsequent activities.
 Requirements arising from different sectors need to
be well documented, verified to be in compliance with
each other, optimized, linked and traced. All software
engineering process activities are synchronized in
accordance to the process model adopted for a
particular software development. There are many
process models to choose from like water fall model,
rapid application development (RAD) model, and
spiral model depending on the size of the project,
delivery time, requirement changes and type of the
project. As for example, development of an avionic
embedded system will adopt a different process model
than development of a web application. Another
criterion for choosing a suitable process model is its
ability to arrest errors in requirement gathering.
 Even though software engineering takes engineering
approach, success of software product is more difficult
than products from other engineering domain like
mechanical engineering or civil engineering. This is

 24

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 1 (Maiden Edition), July, 2013

because software is intangible during its development.
Software project managers use a number of umbrella
activities to monitor software framework activities in a
more visible way. These umbrella activities are
software project tracking and control, risk
management, quality assurance, measurements,
configuration management, work-product or
documents generation, review and reusability
management. CMMI (Capability Maturity Model
Integration) is a software process improvement model
for software development companies by comparing
their process maturity with the best practices in the
industry to deliver quality software products.
 Even after taking all these measures for sticking to
the plan and giving much importance to document
generation for project tracking and control, many
software projects failed. Often time volume of paper
documents is too large for aggregating information by
humans. More than 50% of software projects fail due
to various reasons like schedule and budget slippage,
non-user friendly interface of the software and non-
flexibility for maintenance and change of the software.
And the reasons for all these problems are lack of
communication and coordination between all the
parties involved.

Fig. 1. Economics of Software Development
 Requirement changes of a software are the major
cause of increased complexity, schedule and budget
slippage. Incorporating changes at a later stage of
SDLC increases cost of the project exponentially
(Figure 1). Adding more number of programmers at a
later stage does not solve the schedule problem as
increased coordination requirement slows down the
project further. It is very important that requirements
gathering, planning and design of the software is done
involving all the parties from the beginning. That’s
why several agile process models like Extreme
Programming (XP) (Figure 2), Scrum, Crystal and
Adaptive etc. have been introduced in mid 1990s to
accommodate continuous changes in requirements
during the development of the software instead of
Water Fall process model which had no such scope.
These agile process models have shorter development
cycles where small pieces of work are “timeboxed”,
developed and released for customer feedback,
verification and validation iteratively. One time-box

takes few weeks to maximum a month of time. Agile
process model is communication intensive as customer
satisfaction is given the utmost importance. Agile
software development is possible only when the
software developers are talented, motivated and self-
organized. Agile process model eliminates the
exponential increase of cost to incorporate changes as
in the waterfall model by keeping the customer
involved throughout and validating small pieces of
work by them iteratively. These agile process models
work better for most of the software projects as
changes are inevitable and responding to the changes
is the key to the success of a project.
 Figure 2 depicts the steps of agile process model
named extreme programming (XP) for a traditional
software development where the customer owns the
developing platform or software developers develop
in- house and deploy the software to the customer after
it is built. XP has many characteristics like user story
card, CRC (class, responsibility, collaboration) card
narrated during the requirement gathering stage jointly
by the customer and the software engineers. Customer
decides the priority of each story card and the highest
priority card is only considered or “time-boxed” for
the current iteration of software development.
Construction of code is performed by two engineers
sitting at the same machine so that there is less scope
of errors in the code. This is called pair programming.
Code is continuously re-factored or improved to make
it more efficient.

(a) Water Fall Process Model

(b) Extreme Programming Process Model

Fig. 2. Software Engineering Process Models
 In the next sections analysis for the need for
changing programming style for parallel and
distributed computing is emphasized first. Also
producing software development artifacts for the

 25

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 1 (Maiden Edition), July, 2013

Semantic Web and the challenges of the current
business model of application development and
deployment involving Web 2.0, Web 3.0 technologies
and cloud computing platform are analyzed. Finally
methodologies to develop quality software that will
push forward the advances of the cloud computing
platform have been suggested.

5. NEED FOR MODIFICATION OF SOFTWARE

ENGINEERING: ANALYSIS
In latest hardware technology the computers are multi-
core and networked. SW engineers should train
themselves in parallel and distributed computing to
complement this advances of hardware and network
technology. Many modeling and simulation software
needs to process huge amount of streaming data with
complex algorithms real time which is possible only
by this parallel hardware architecture. Though need for
HPC and the parallel hardware architecture such as
grid computing, ASIC and reconfigurable FPGA
computing are evolving over the last three decades, the
application developers are still not familiar with the
parallel programming styles and exploration of the
parallel resources of the modern hardware platform.
One of the most important challenges of HPC is to
transform the sequential program written for classic
Von Neumann architecture for parallel processors of
the hardware. Task level parallelism can be discovered
by the programmers and exploited by parallel
hardware architecture. POSIX thread programming can
fork multiple child threads with sub tasks assigned to
them and can synchronize operations by joining the
threads after their executions. OpenMP is another
application programming interface (API) where the
programmers can give directives to the compiler to
identify the task level parallelism and schedule task on
multiple processors according to the programmer
directives. This involves additional libraries and tools
as part of the OS for process synchronization, control
and data communication between processes. The well-
known examples of such libraries are POSIX thread
for thread programming, OpenMP, Massage Passing
Interface (MPI), Parrallel Virtual Machine (PVM) to
provide application developers with distributed
communication and synchronization facilities.
5.1. Need for Semantic Web Enabled Software
Artifacts
Inclusion of the Free/Libre/Open Source Software
(FLOSS) (Sun Microsystem, 2012), Component of the
Shelf (COTS) pieces and Web Services, software
development complexity is going to increase manifold
because of the synchronization needs with third party
software. Automatic discovery and integration with
Web Services will reduce the amount of work in terms
of kilo-line of code (KLOC) or function points (FP)
required for developing software on semantic web but
there will be added semantic skill requirements.
Software developers need to change their software

artifacts from plain text documents to machine
readable structured linked data, to make them
Semantic Web ready. Once the software engineers
grasp the Semantic Web technologies, understand their
capabilities and their many advantages like
interoperability, adaptability, integration ability of
open and distributed software components with other
applications, they will make their software artifacts
Semantic Web ready. With this semantic
transformation knowledge management in software
engineering will be much easier and compliance
checking of various requirements during project
planning, design, development, testing and verification
can be automated. All requirements can be optimized,
linked and traced. Aggregating of information from
requirements document will be easy and impact
analysis before actual changes are made can be done
more accurately. Increased maintainability of software
will also increase reliability of the software. Semantic
artifacts will also give their product a competitive edge
for automatic discovery and integration with other
applications and efficient maintenance of their
artifacts. Semantic Web services which can be linked
with other web services will create new and more
powerful software applications, encourage reuse and
reduce redundancy.
5.2. Impact of Cloud Computing on Software
Engineering
Like cloud computing platform, software development
process will also involve heterogeneous platforms,
distributed web services and multiple enterprises
geographically dispersed all over the world. Existing
software process models and framework activities are
not going to be adequate unless interaction with cloud
providers is included and synchronization with web
services are taken care of. Software process models
should involve the cloud providers in every steps of
decision making of software development life cycle to
make the software project a success. First of all roles
of software engineers and cloud providers are needed
to be separated. As the cloud provider is an external
entity or third party, interactions with them will be
difficult. As a whole Cloud computing paradigm on
Semantic Web background makes software
development project more complex.
 Requirements gathering phase so far included
customers, users and software engineers. Now it has
to include the cloud providers as well, as they will be
supplying the computing infrastructure and maintain
them too. As the cloud providers only will know the
size, architectural details, virtualization strategy and
resource utilization percentage of the infrastructure,
planning and design phases of software development
also have to include the cloud providers. The cloud
providers can help in answering these questions about:
1) how many developers are needed, 2) component
reuse, 3) cost estimation, 4) schedule estimation, 5)

26

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 1 (Maiden Edition), July, 2013

risk management, 6) configuration management, 7)
change management, and 8) quality assurance.
 But software developers have to use the web
services and open-source software freely available
from the cloud instead of procuring them. Software
developers should have more expertise in building
software from readily available components than
writing it all and building a monolithic application.
Refactoring of existing application is required to best
utilize the cloud infrastructure architecture in a cost
effective way. Software engineers should train
themselves in internet protocols, XML, web service
standards and layered separation of concerns of SOA
architecture of internet, Semantic Web technologies to
leverage all the benefits of Web 2.0. Cloud providers
will insists that software should be as modular as
possible for occasional migration from one server to
another for load balancing as required by the cloud
provider.
 Complexity of SW development project will also
increase many folds because of lack of documentations
of implementation details of web services and their
integration requirements. Only description that will be
available online is the metadata information of the web
services to be processed by the computers
automatically. Only coding and testing phases can be
done independently by the software engineers. Coding
and testing can be done on the cloud platform which is
a huge benefit as everybody will have easy access to
the software being built. This will reduce the cost and
time for testing and validation.
 Maintenance phase also should include the cloud
providers. There is a complete shift of responsibility of
maintenance of the infrastructure from software
developers to cloud providers. Now because of the
involvement of the cloud provider the customer has to
sign contract with them as well so that the “Software
Engineering code of ethics” are not violated by the
cloud provider. In addition, protection and security of
the data is of utmost importance which is under the
jurisdiction of the cloud provider now.
 Also occasional demand of higher resource usage of
CPU time or network from applications may thwart the
pay-by use model of cloud computing into jeopardy as
multiple applications may need higher resource usage
all at the same time not anticipated by the cloud
provider in the beginning. Especially when
applications are deployed as “Software-as-a-Service”
or “SaaS” model, they may have occasional workload
surge not anticipated in advance. Cloud provider uses
virtualization of resources technique to cater many
customers on demand in an efficient way. For higher
resource utilization occasional migration of application
from one server to another or from one storage to
another may be required by the cloud provider. This
may be a conflict of interest with the customer as they
want dedicated resources with high availability and
reliability of their applications.

 To avoid this conflict cloud providers need to
introduce quality of service provisions for higher
priority tenants. The amount of interactions between
software engineers and cloud providers will depend on
type of cloud like public, private or hybrid cloud
involvements (Figure 3). In private cloud there is more
control or self-governance by the customer than in
public cloud. Customer should also consider using
private cloud instead of using public cloud to assure
availability and reliability of their high priority
applications. Benefits of private cloud will be less
interaction with cloud provider, self-governance, high
security, reliability, availability of data. But cheaper
computing on public cloud will always outweigh the
benefits of less complexity of SW development on
private cloud platform and is going to be more
attractive.

 Fig. 3. Economics vs. Complexity of Software

5.3. Risk Management for Web Applications and
Safety and Privacy Issues in Cloud Computing
Platform
In comparison to desktop applications, web
applications (T. DeMarco et al., 2003; T. Emilia
Mendez et al., 2006; Siani Pearson, 2009; Wayne A.
Jansen, 2011) need to be more reliable as they are
supposed to be for multi-tenants and multi-user
environment. Reliability of software applications
developed by integrating COTS and Web Services
should be taken care of. COTS are executable binary
codes need to be trust worthy as they do not provide
source code or not enough documentation are available
for them. Also when resources are rented from cloud
providers, misuse of data by cloud providers needs to
be protected also. Web applications are also more
vulnerable to security threats as they are exposed to the
whole world over the internet. There can be attack
from viruses, hackers, phishing like credit card fraud,
malicious code injected by botnets which can cause
performance lags or crashing of the system etc.
Security requirements of web applications also need to
be analyzed and incorporated from the early planning
and design phase. Data encryption is a standard
practice to secure transmission of sensitive data over
the internet. Also any of such attack should be
constantly monitored and in case of data loss
immediate action should be taken to mitigate the
problem. All these threats can be classified as external
threats.

 27

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 1 (Maiden Edition), July, 2013

 Also all the resources of the cloud computing
platform are shared by multiple tenants over the
internet across the globe. In this shared environment
having trust of data safety and privacy are of utmost
importance to customers. Safety of data means no loss
of data pertaining to the owner of the data and privacy
of data means no un-authorized use of the sensitive
data by others. As cloud provider has greater resource
pool they can easily keep copies of data and ensure
safety of user data. Privacy of data is of more concern
in public cloud than in private cloud. In public cloud
environment as data is stored in off-premise machines
users have less control over the use of their data and
this mistrust can threaten the adoption of cloud
computing platform by the masses. Technology and
law enforcement both should protect privacy concerns
of cloud customers. Software engineer must built their
applications as web services which can guarantee to
lessen this risk of exposure of sensitive data of cloud
customers.

CONCLUSION
Traditional way of software engineering is no longer
fully suitable in the changing scenario of modern
hardware and software architecture of parallel and
distributed computing on Semantic web and Cloud
computing platform. These will make software
engineering more difficult as software engineers have
to change their programming style for parallel
computing, master the Semantic Web skills for using
open source software on distributed computing
platform and they have to interact with a third party
called the “cloud provider” in all stages of software
processes. Automatic discovery and integration with
Web Services will reduce the amount of work in terms
of line of code (LOC) or function points (FP) required
for developing software on cloud platform but there
will be added semantic skill requirements and
communication and coordination requirements with
the cloud providers and web services which makes
software development project more complex. Cloud
computing being the anticipated future computing
platform, more software engineering process models
need to be researched which can mitigate all its
challenges and reap all its benefits. Also safety and
privacy issues of data in cloud computing platform
need to be considered seriously so that cloud computing
is accepted by all.

REFERENCES
Christian Bizer, Tom Heath, Tim Berners-Lee, Heath T.

(2012), Linked Data- The Story So Far. Special Issue on
Linked Data, International Journal on Semantic Web and
Information Systems (IJSWIS), Vol 5, No. 3, PP. 1-22.

J. Handler, N. Shadbolt, W. Hall, T. Berners-Lee and D.
Weitzner, (2008), Web Science: An Interdisciplinary

Approach to Understanding the Web, Communications
of the ACM, Vol. 51, No. 7.

Brand Niemann et al. (2005), Introducing Semantic
Technologies and The Vision of The Semantic Web,
SICOP White Paper, PP. 1-51.

Erin Cavanaugh, (2006), Web Services: Benefits,
Challenges and a Unique Visual Development Solution,
ALTOVA White Paper, PP. 1-21.

Duane Nickull et al. (2007), Service Oriented Architecture
(SOA) and Specialized Messaging Patterns, White
Paper, PP. 1-21.

http://www.itoamerica.com/media/pdf/adobe/soa_messaging
_patterns.pdf.

Sun Microsystem, (2009), Introduction to Cloud Computing
Architecture, White Paper, 1st Edition, PP. 1-40,
www.sun.com/cloud/.

Sun Microsystem, (2012), Open Source and Cloud
Computing: On-Demand Innovative IT on a Massive
Scale, http://docs.huihoo.com/cloud-computing/sun-
open-cloud-200906-en.pdf.

Radha Guha, David Al-Dabass, (2010), Impact of Web 2.0
and Cloud Computing Platform on Software
Engineering, In Proceedings of 1st International
Symposium on Electronic System Design (ISED), PP.
213-218.

Radha Guha (2013), Impact of Semantic Web and Cloud
Computing Platform on Software Engineering, Book
Chapter, Springer London Heidelberg New York
Dordrecht, PP. 3-24.

M. Brambilla et al. (2006), A Software Engineering
Approach to Design and Development of Semantic Web
Service Applications, LNCS 4273, PP. 172-186.

R. Pressman, (2009), Software Engineering: A Practitioner’s
Approach, 7th Edition, McGraw-Hill Higher Education.

Sommerville. (2006), Software Engineering, 8th Edition,
Pearson Education.

Salesforce.com, (2009), Agile Development Meets Cloud
Computing for Extraordinary Results, White Paper, PP.
1-8, www.salesforce.com.

T. DeMarco, T. Lister, (2003), Waltzing with Bears:
Managing Risk on Software Projects, Dorset House
Publishing Company, Incorporated.

T. Emilia Mendez, Nile Mosley (Eds). (2006), Web
Engineering, Springer-Verlag Berlin Heidelberg.

Siani Pearson, (2009), Taking Account of Privacy When
Designing Cloud Computing Services, Cloud 2009:
ICSE Workshop on Software Engineering Challenges of
Cloud Computing, Vancouver, IEEE, PP. 44-52.

Wayne A. Jansen, (2011), Cloud Hooks: Security and
Privacy Issues in Cloud Computing, Proceedings of the
44th Hawaii International Conference on System
Sciences, PP. 1-10.

A publication of Covenant University Journals: journals.covenantuniversity.edu.ng

 28

