
Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 1 (Maiden Edition), July, 2013

 1

Abstract— The paper presents a precedent-oriented approach to experimenting with programmable units of developer’s
activity in conceptual designing of Software Intensive Systems (SIS). The reuse of any such a unit is being implemented as a
typical work of a designer in accordance with the definite technique which is previously programmed. The offered approach
is coordinated with simplifying the complexity on the base of interactions of designers with the accessible experience the
kernel of which consists of models of assets included into Experience Base. The simplifying is being achieved by the use of
the specialized pseudo-code language in programming of assets for their reuse by designers.

Keywords/Index Terms— conceptual designing, pseudo-code language, programming, precedent-oriented approach,
software intensive systems.

1. INTRODUCTION
The successful creation of any SIS in an essential

measure depends on what means are used by designers
for operated mastering by the system complexity. In
general sense the complexity (or simplicity) of SIS
reflects the degree of difficulty for designers in their
interactions with definite models of SIS (or its
components) in solving the definite tasks.

The system or its any component is complex, if the
designer (interacting with the system) does not have
sufficient resources for the achievement of the
necessary level of understanding or achieving the other
planned aims. In most general case the complexity or
simplicity is a function of three variables ‒ time,
accuracy (variety) and volume of information. The
complex system is being produced more difficultly,
than the simple system.

Often enough various interpretations of Kolmogorov
measure (Li & Vitanui, 2008) are applied for
estimations of a degree of the system complexity. This
measure is connected with “the minimal length of
program Р providing the construction of system S from
its initial description D.” Distinctions in interpretations
are caused first of all by features of system S, and also
what contents are connected with objects P and D and
how these contents are being specified.

In creating of SIS the objects of the Р-type are being
built in step by step into the process of designing with
using the certain “method of programming of M”.
Reality of such a work demonstrates that the
complexity of “P-object” no less than the complexity
of SIS in its any used state. Moreover, M-program
providing the construction of P-object is being built on
the base of the same initial description D as the system
S. It can be presented by the following chain

D→M→P→S.
Named relations between D, M, P can be used by

designers for disuniting the process of designing on
stages [D(t0)→M1→P1→S(t1)], [D(t1)→M2→P2→ S(t2)],…,
[D(ti)→Mi+1→Pi+1→S(ti+1)],…., [D(tn-1) →Mn→Pn→S(tn)]
where a set {S(ti)} collects the states of SIS being
created.

This division of designing on stages is a base of any
modern technology providing the creation of SIS. In
technologies such a manner is used in different forms
for different aims. This manner helps to decrease the
complexity of interactions with SIS in its any state
S(ti). But till now the viewpoint of programming is not
being supported instrumentally at early stages of
designing.

This paper presents the experiential approach to
supporting the collaborative designing at its early
stages when the conceptual project of SIS is being
created. The essence of the approach is defined by the
explicit work of designers with Mi- and Pi-programs in
the creation of which the specialized toolkit WIQA is
being used (Sosnin, 2012a). This toolkit can be
interpreted as Experience Factory (Basili et al., 2001)
with a library of assets programmed in a specialized
pseudo-code language oriented on question-answer
reasoning. The library of assets is organized as
Experience Base (Basili et al., 2006) including the
base of precedents’ models (Base of Precedents).

2. ESSENCE OF PRECEDENT-ORIENTED APPROACH
The extremely low degree of a success in designing

of software intensive systems are an important reason
(El Emam & Koru, 2008) for searching the new
approaches to the collaborative work in this subject
area. The analysis of the successfulness problem
indicates that in a search of new ideas and their

Precedent-Oriented Experimenting in Designing
of Software Intensive Systems

Petr Sosnin
 Ulyanovsk State Technical University, Ulyanovsk, Russia

Contact(s). sosnin@ulstu.ru

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 1 (Maiden Edition), July, 2013

 2

technological materializations the special attention
should be given to the human factor when the intensive
human-computer activity is being fulfilled in
conditions of the complexity.

Let us notice that designing (especially conceptual
designing) is impossible without researches by
designers of numerous and practically unpredictable
situations of a task type. In such situations the designer
should behave as a researcher who uses the appropriate
type of the research in which the personal and
collective experience is applied creatively in the real
time.

In designing of the definite research the designer
would rather work as a scientist who wants to fulfill
the definite experiment the results of which will be
applied in the creation of the current project and can be
useful for the future reuse. Therefore, the search of
improved forms of designer interactions with own and
collective experience is a promising way for increasing
the degree of the success in designing of SIS.

As told above about complexity of SIS it can be
operated if designers will build and execute M- and P-
programs of their activity. Such programs should
present the plans of experiments which should help to
solve the project tasks in forms suitable for the future
reuse. At the conceptual stages of designing the
language for M- and P-programming should be as near
as possible to the natural language in its algorithmic
usage. In deep our opinion such a language should
have a pseudo-code type.

The previous reasoning was used for the
specification and materialization of the experiential
approach to its applying in the designing of the family
of SIS. In this work the standard “Framework for
Software Product Line Practice (Version 5.0)”
[available at http://www.sei.cmu.edu/ product lines/
tools/framework] has been taken into account. Such
an orientation of the approach leads to the question
about modeling the assets, first of all, as units of
previous experience which can be reused in designing
as in the current project so in developments of new
“members” of the SIS family.

The precedent-oriented approach to the behavior of
designers has following features:

1. The definite set of designer actions are being
presented as a program (M- or P-types) the execution
of which leads to the creation of the corresponding part
of the conceptual project.

2. Programs of actions are built by designers with the
help of the pseudo-code language LWIQA (embedded to
the toolkit WIQA) which is similar to the naturally
professional language in its algorithmic usage. The
language LWIQA was specified in details in our paper
(Sosnin, 2012a).

3. Pseudo-code programming of designer actions is

oriented on their reuse as typical units each of which
can be qualified as a precedent. In accordance with
Cambridge dictionary “precedents are actions or
decisions that have already happened in the past and
which can be referred to and justified as an example
that can be followed when the similar situation arises”
(http: //dictionary.cambridge.org/dictionary/British/
precedent). Models of precedents are used in the
approach as structural units of the experience in any its
forms.

4. Pseudo-code programs not only are being created
by designers, but also are being executed by them.

5. In all actions with M- and P-programs the
designers fulfill the role of “intellectual processor” in
the frame of which they actively interact with personal
and collective experience and also with experience
models registered in Experience Base.

6. Role of “intellectual processor” (I-processor) is
being supported by specialized workflows
“Interactions with Experience” (Sosnin, 2012b)
opening the possibility for scientifically experimental
activity of designers.

7. Activity of I-processor is being implemented by
means of question-answer reasoning (QA-reasoning)
and its models in order to coordinate the natural forms
of the access to the experience (as a natural
phenomenon) and the access forms to models of
experience.

8. Means of QA-reasoning can be applied by
designers as for analyzing so for pseudo-code
programming of any project task of any type.

Let us clarify some details of named features. All of
them are bound by the behavioral point of view on
creating of programs describing the work of designers.
Moreover, this point of view is based on the use of
precedents as basic units of the behavior. Such units
are built and reused as intellectually processed
“conditioned reflexes”.

Any precedent is appeared in the experiential
interaction of a human with surrounding in definite
conditions. In general case the acting human wants to
achieve the definite aims in the frame of definite
motives.

Any project precedent is also the result of
intellectual processing of the definite unit of the
designing activity. Hence, any project precedent
appears as a result of the corresponding “experiment”
executed by the designer or a group of designers.
Similar “experiment” is being planned and being
implemented in the definite conditions for achieving
the definite aims of the motivated experimenter(s).

In general case the precedent can be described by the
logical scheme presented in figure1. This logical
model is a human-oriented scheme the human
interaction with which is able to activate the internal

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 1 (Maiden Edition), July, 2013

 3

logical process on the level of the second signal system
in human brains.

FIGURE 1. LOGICAL SCHEME OF THE PRECEDENT
To understand the developed precedent the designer

should try to emulate the behavior embedded to it.
Such emulation in the programmed form we bind with
the creation and experiential execution of P-programs.

When the precedent is being assembled from other
precedents and such a work should be managed it is
need the other type of program supporting the flows of
works of designer or the group of designers. This type
of programs we bind with M-programs. Designers
should create programs of this type for technological
flows of works, scientific workflows and human
workflows.

M-programs also as P-programs should be
previously created and tested with using the means of
emulation. In the offered approach such work are
fulfilled by designers with using the specialized tools
supporting the designer role named “intellectual
processor” [2] 18Sosnin P..

All named features influence on simplifying of the
complexity. As told above any human (designer)
estimates the complexity of the definite interaction
with artifacts on the base of accessible resources. The
library of assets included to Experience Base is a
useful source of resources opened for simplifying the
complexity.

3. RELATED WORKS
Registering the human activity in program forms has

been offered and specified constructively for Human
Model Processor (MH-processor) in the paper (Karray
et al., 20080. The EPIC version of MH-processor is
oriented on programs written in the specialized
command language Keystroke Level Model (KLM). A
set of basic KLM actions includes the following
operators: K ‒ key press and release (keyboard), P ‒
point the mouse to an object on screen, B ‒ button
press or release (mouse), H ‒ hand from keyboard to
mouse or vice versa and others commands. Operators
of KLM-language and their values help to estimate
temporal characteristics of human interactions for
alternative schemes of interfaces. KLM-programs are
far from the sense of used reasoning and therefore they
do not reflect interactions with the accessible

experience.
Explicit programmable forms of the designer

activity are not used in modern technologies of SIS
designing. For example in technologies based on
Rational Unified Process (Borges, et al., 2012) the
conformity to requirements and understandability are
being reached with the help of “block and line”
diagrams expressed in the Unified Modeling Language
(UML). The content of diagrams built by designers is
being clarified by necessary textual descriptions. But
UML is not the language of the executable type and
therefore diagrams are not suitable for experimenting
with them as with programs of P-type.

For collaborative solving the tasks in coordination
the RUP suggests the means of normative workflows
the relations between which are being regulated by a
set of rules. For any task of the definite normative
workflow the RUP has its interactive diagrammatic
model with a set of components the use of which can
help in solving the task. Forms of programming are not
used also in all of these means. The similar state of
affairs with conceptual designing exists in other known
technologies supporting the development of SIS.

In the offered approach its scientific point of view
correlates with two faces of the software engineering
described in (Cares et al., 2006) where functional
paradigms and scientific paradigms are discussed. In
the context of this paper the approach means are
oriented on scientific paradigms used by software
engineers.

An empirical line of the approach inherits
understanding the place and role empirical methods in
software engineering generally presented in (Sjoberg et
al., 2007). It is necessary to mark numerous papers of
V. Basili (especially papers (Basili et al., 2001) and
(Basili et al., 2006).

The important group of related works concern
means of Question-Answering, for example, papers
(Webber & Webb, 2004) and (Xu & Rajlich, 2005). In
this group the nearest work presents experience-based
methodology “BORE” (Henninger, 2003) where
question-answering is applied also but for the other
aims and this methodology does not support
programming of the intense designer activity.

An important group of related works is connected
with workflows. Executable languages for descriptions
of workflows (for example BPEL or YAWL) have
some restrictions which prevent in programming of
workflow(Van der Aalst & Hofstede, 2004). Their
pseudo-code programming has not any restrictions.
The necessity of programming for scientific workflows
is indicated in publication (Held & Blochinger, 2009)
but without practical solutions and suggestion of using
the pseudo-code means for such aims.

Name of precedent Pi:

 while [logical formulae (F) for motives M ={Mk}]
 as [F for aims C = {Cl}]
 if [F for preconditions U’= {U’n}],
 then [plan of reaction (program) rq],
 end so [F for post conditions U” = {U”m}]

 there are alternatives {Pj(rp)}.

c
h
o
i
c
e

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 1 (Maiden Edition), July, 2013

 4

4. QUESTION-ANSWER MODELING OF DESIGNER
ACTIVITY

A. Operating Space of Experimentation
Any experimental research is being implemented in

an appropriate medium of experimenting. In described
case the role of such a medium fulfills an operating
space supported by the toolkit WIQA. The generalized
scheme of experimentations in the indicated space is
presented in figure2.

FIGURE 2. INTERACTIONS WITH TASKS
Solving any appointed task, the designer registers

the used question-answer reasoning (QA-reasoning) in
a specialized protocol (QA-protocol) so that this QA-
protocol can be used as the task model (QA-model).
Typical units of QA-reasoning are questions (Q) and
answers (A) of different types. Tasks are a very
important type of questions. Below the tasks will be
designated with the use of a symbol “Z”.

Models of such a type can be used by designers for
experimenting in the real time with all tasks being
solved. Units of the experiential behavior extracted
from solution processes are being modeled on the base
of QA-models of tasks.

The scheme reflects also that the investigated
behavior model can be uploaded as the model of the
corresponding precedent in the question-answer
database (QA-base) and in Experience Base of WIQA.
After that they can be used by designers as units of the
accessible experience. Experience models from the
other sources can be uploaded in the Experience Base
also.

B. Question-Answer Memory
If designers of SIS use the toolkit WIQA they have

the opportunity for conceptual modeling the tasks of
different types. In this case the current state of tasks
being solved collaboratively is being registered in QA-
base of the toolkit and this state is visually accessible
in forms of a tree of tasks and QA-models for
corresponding tasks. The named opportunity is
presented figuratively in figure 3 where QA-base is
interpreted as a specialized QA-memory the cells of
which are visualized by inquiries of designers. First of
all, the cells are used for storing the registered units of
QA-reasoning.

FIGURE 3. SINKING OF TASKS IN WIQA-ENVIRONMENT
Any cell has the following basic features:
1. Cell is specified by a set of normative attributes

reflecting, for example, the textual description of the
stored interactive object, its type and unique name, the
name of its creator, the time of last modification and
the others characteristics.

2. Any cell has a unique address the function of
which is fulfilled by the type name of the stored unit
and its unique index appointed automatically at
creating the unit. Empty cells are absent.

3. Designer has the possibility to appoint to the cell a
number of additional attributes if it will be useful for

the work with the object stored in the cell.
Having chosen necessary attributes the designer can

adjust the cell for storing any question or any answer
in a form of an interactive object which is accessible

ZG ={ZG
p} ZW ={ZW

m} ZD ={ZD
i} ZA={ZA

k}

 Workflow Workflows Workflow ZJ10 ZJ9 ZJ8

ZJ3

ZJ7

ZJ2

ZJ6 ZJ5

ZJ1 ZJ

ZJ4

ZW ={ZW
n} ZN ={ZN

j} ZG ={ZG
s}

Integrated environment of QA-modeling

and QA-programming
Designer_i

QA-data

D11
D12
 D1p

DV1
D2q
D22
D21

G2

G1
T*

GV
DV2
DVS

Z11
Z12
Z1m

Zp1

Z2n
Z22
Z21

Z2

Z1
Z*

Zp
Zp2 Zpr QA-memory

Q11

Q2

Q1 A1 Q

A2

Qp Ap

Q12
Q1m

Qp1

Q2n
Q22
Q21

Qp2
Qpr

A11
A12
A1m

A21
A22
A2n

Ap1
Ap2
Apr

QA-protocol
Tree of tasks

Designer_j

QA-programs

QA-operator

Team of
Designerss

Experience Base

WIQA Conceptual project of SIS

QA-protocols for tasks
QA-protocols for tasks

QA-protocols for tasks

QA-base

D
e
s
i
g
n
e
r
s

Other sources
of experience

models

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 1 (Maiden Edition), July, 2013

 5

by inquiries as designers so programs. Thus any
question and its answer are stored in QA- memory as a
pair of related interactive objects named below as QA-
unit.

QA-units are stored in QA-memory as data the
abstract type of which will be named as QA-data. The
use of this type helps to emulate other data types,
including descriptions of operators. First of all it is
necessary for the use of QA-memory in pseudo-code
programming. Thus cells of QA-memory destined for
storing QA-units can be adjusted for storing the units
of the other nature, for example, for units used in
solving the tasks.

In figure 3 the scheme of QA-memory demonstrates
the store of presentations for “Team of designers”,
“Tree of tasks” and a pseudo-code program with its
operators and data. The program, its operators and
used data are designated as QA-program, QA-
operators and QA-data to underline that they inherit
the features of QA-memory cells.

The responsibility for tasks being solved is being
distributed among designers in accordance with the
competence of each of them. The team competence
should be sufficient for the real time work with
following sets of tasks: subject tasks ZS = {ZS

i} of the
SIS subject area; normative tasks ZN = {ZN

j} of the
technology used by designers; adaptation tasks ZA=
{ZA

k} providing an adjustment of tasks {ZN
j} for

solving the tasks {ZS
i}; workflow tasks {ZW

m}
providing the works with tasks of ZS-type in
workflows {Wm} in SIS; workflow tasks {ZW

n}
providing the works with tasks of ZN-type in
corresponding workflows {Wn} in the used
technology; workflow tasks {ZG

p} and {ZG
r} any of

which corresponds to the definite group of workflows
in SIS or in the technology.

The indicated diversity of tasks emphasizes that
designers should be very qualified specialists in the
technology domain but that is not sufficient for
successful designing. Normative tasks are invariant to
the SIS domain and therefore designers should gain
certain experience needed for solving the definite tasks
of the SIS subject area. The most part of the additional
experience is being acquired by designers in
experiential learning when tasks of ZS-type are being
solved in conceptual designing. Solving of any task
ZSi is similar to its expanding into a series on the base
of normative tasks.

Objects uploaded to QA-memory are bound in
hierarchical structures. In their real time work the
designers interact with such objects. They process
them with the help of appropriate operations helping to
find and test the solution of tasks.

Objects in QA-memory are accessible to designers
in accordance with given rights of an access. But in

any case any QA-model is accessible to the group of
designers who interact with it with different purposes
which include checking this model. Thus any QA-
model is a product of a collaborative reasoning and
coordinated understanding.

C. Question-Answer Modeling
One way for conceptual solving any task of

indicated types is based on creating its QA-model as a
system of questions and answers which have
accompanied the solution process. The generalized
scheme of such a model is presented in figure 4.

FIGURE 4. INTERACTIONS WITH QA-MODEL OF TASK
Question-answer models, as well as any other

models, are created for an extraction of answers to the
questions enclosed in the model. Moreover, the model
is a very important form of the representation of
questions, answers on which are being generated
during visual interactions of designers with this model.

The essence of QA-modeling is interactions of
designers with artifacts included to QA-model in their
current state. For such an interaction the developer can
use the special set of QA-commands, their sequences
and a set of WIQA plug-ins.

The main subset of positive effects of QA-modeling
includes:

• controlling and testing the reasoning of the
developer with the help of “collaborative reasoning”
and “integrated understanding“ included into the QA-
models;

• correcting the understanding of designers with the
help of comparing it with “integrated understanding”;

• combining the models of the collective experience
with an individual experience for increasing the
intellectual potential of the designer on the definite
workplace;

• including the individual experience of the
developer in accordance with the request on the other
workplaces in the corporate network.

As it is shown in this scheme any component of QA-
model is a source of answers accessible for the
designer as results of interactions with this model. At
the same time the potential of QA-model is not limited
by the questions planned at defining and creating the
QA-model. Another source of useful effects of QA-
modeling is an additional combinatorial “visual
pressure” of questions and answers which is caused by

WIQA Design process

S({Ai})

Designer
?…

?...
…

?… ?…
?… ?…

?…

?…
?…

?…
?…

?…
?…

?…
QA-model

?…

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 1 (Maiden Edition), July, 2013

 6

influence on brain processes in their contact with
components of QA-model. In this case there is no
difference who has created QA-model.

There are different forms for building answers with
the help of QA-modeling, not only linguistic forms.
But in any case the specificity of QA-modeling is
defined by the inclusion of additional interacting with
“question-answer objects” into dynamics of the
integrated consciousness and understanding (into
natural intellectual activity of designers).

The description of any behavioral unit composed of
designer interactions with QA-model in accordance
with the definite scenario can fulfill the role of a model
of such a designer activity. In order to distinguish this
type of models from other types of models used in our
approach they can be named “QA-models of the
designer activity”. Any such a scenario as a specific
program reflects designer interactions (actions) aimed
at understanding the corresponding task and its
solution. In the discussed case the scenario is a text
which consists of instructions indicating the designer
actions which should be executed in the reuse of
behavioral unit in the WIQA-medium.

Similar scenarios can be created for acting the
human not only in the WIQA-medium. Their content,
form and appointment are demonstrated by the
following technique:

//Reset of Outlook Express
O1. Quit all programs.
O2. Start On the menu Run, click.
O3. Open In the box regedit, type, and then OK the

click.
O4. Move to and select the following key:
HKEY_CURRENT_USER/Software/Microsoft/Office

/9.0/Outlook
O5. In the Name list, FirstRunDialog select.
O6. If you want to enable only the Welcome to

Microsoft Outlook greeting, on the Edit menu Modify,
click the type True in the Value Data box, and then OK
the click.

O7. If you also want to re-create all sample welcome
items, move to and select the following key:

HKEY_CURRENT_USER/Software/Microsoft/Office
/9.0/Outlook/Setup

O8. In the Name list, select and delete the following
keys: CreateWelcome First-Run

O9. In the Confirm Value Delete dialog box click
Yes, for each entry.

O.10. On the Registry menu, click Exit.
O11. End.

This technique is chosen to emphasize the

following:
1. There are many behavior units describing the

human activity in different computerized mediums.

2. Descriptions of similar typical activities help in
the reuse of these precedents.

3. Descriptions of techniques have forms of
programs (N-programs) written in the natural language
LN in its algorithmic usage.

4. Such N-programs consist of operators being
fulfilled by the human interacting with the definite
computerized system. In the example of N-program its
operators are marked by the symbol “O” with the
corresponding digital index.

Thus there are no obstacles for uploading the N-
programs in QA-memory. This way is used for
uploading the techniques supporting the designer
activity in the WIQA-medium.

So the other way of coding the designer activity is
bound with its programming in the context of the
scientific research of the task. All tasks indicated
above are being uploaded to QA-memory with the rich
system of operations with interactive objects of Z-, Q-
and A-types. Designers have a possibility to program
the interactions with necessary objects. Such programs
are similar to the plans of the experimental activity in
conceptual designing of SIS. Operators of programs
are placed in Q-objects. Corresponding A-objects are
used for registering the facts or features of executed
operations.

Thus, experimenting with units of the own behavior
the designer has a flexible means for specifying the
QA-programs, QA-operators and QA-data used in
simulating of such behavioral units. Experimenting is
being fulfilled in forms of QA-modeling aimed at
solving tasks in conceptual designing.

5. SIMULATING THE DESIGNER’S BEHAVIOR

A. Preparing of Experiments
The principal feature of the offered approach is an

experimental investigation by the designer the
programmed own behavior which has led to the
conceptual solution of the appointed task. Any solution
of such a type should demonstrate that its reuse meets
necessary requirements when any designer of the team
will act in accordance with QA-program of the
investigated behavior.

As told above, in order to achieve it the designer
should work similarly to the scientist who prepare and
conduct experiments with behavior units of M- or P-
types. In the discussed case the designer will
experiment in the environment of the toolkit WIQA. In
this environment to prove achieving the aims of any
experiment the designer has possibilities of
experimenting with any QA-operator of investigated
QA-program and/or with any group of such QA-
operators or with QA-program as a whole. Describing
the experiment for the reuse the designer should
register it in an understandable form for other

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 1 (Maiden Edition), July, 2013

 7

members of the team.
To begin the definite experiment the initial text of

QA-program should be built. In general case such a
work includes the following steps:

1. Formulation of the initial statement of the task.
2. Cognitive analysis of the initial statement with the

use of QA-reasoning and its registering in QA-
memory.

3. Logical description of “cause-effect relation”
reflected in the task.

4. Diagrammatic presentation of the analysis results
(if it is necessary or useful).

5. Creation of the initial version of QA-program.
Indicated steps are being fulfilled by the designer

with the use of the accessible experience including the
personal experience and useful units from Experience
Base of WIQA.

B. Experimenting with QA-program
Only after that the designer can conduct the

experiment, interacting with QA-program in the
context of the accessible experience. The specificity of
interactions can be clarified on examples of QA-
operators of any QA-program or its fragment, for
example, the following fragment of QA-program
coding the well-known method of SWOT-analysis
(Strengths, Weaknesses, Opportunities, and Threats):

Q 2.5 PROCEDURE &SWOT main&
Q 2.5.1 &t_str& := QA_GetQAText(&history_

branch_qaid&)
Q 2.5.2 SETHISTORYENTRIES(&t_str&)
Q 2.5.3 CALL &ShowHistory&
Q 2.5.4 IF &LastHistoryFormResult& == -1 THEN

RETURN
Q 2.5.5 IF & LastHistoryFormResult& == 0 THEN

¤t_action_qaid& := QA_CreateNode(
¤t_project&, &history_branch_qaid&, 3, "")
ELSE ¤t_action_qaid& := &LastHistoryForm
Result&

Q 2.5.6 &t_str& := QA_GetQAText(¤t_
action_qaid&)

Q 2.5.7 SWOT_DESERIALIZE(&t_str&)
Q 2.5.8 &t_int& := SWOT_SHOWMAINFORM()
………………..
Q 2.5.14 FINISH

This source code demonstrates a habitual syntax but

features of the code are being opened in interactions of
the designer with it. Conditions and means of
experimenting are shown in figure 5, where one of
operators (with address name Q2.5.2) is shown in the
context of previous and subsequent operators. Any
QA-program is being executed by the designer step by
step any of which is aimed at the corresponding QA-
operator. In this work the designer uses the plug-in

“Interpreter” embedded to the toolkit.

FIGURE 5. EXPERIMENTING WITH QA-PROGRAM
Interpreting the current operator (for example,

Q2.5.2), the designer can fulfill any actions till its
activation (for example, to test existing circumstances)
and after its execution (for example, to estimate the
results of the investigation), using any means of the
toolkit WIQA. When the designer decides to start the
work with QA-operator this work can include different
interactive actions with it as with corresponding QA-
units or with their elements. The designer can analyze
values of their attributes and makes useful decisions.

Moreover, the designer can appoint the necessary
attributes for any QA-operator and for any unit of QA-
data in any time. In accordance with appointments the
designer can include changing in the source code of
QA-program being executed (investigated). Such work
can be fulfilled as in QA-memory so with the help of
the plug-ins “Editor”.

The current QA-program or its fragment can be
executed or step by step by the designer or
automatically as a whole with the help of the plug-in
“Compiler”. Therefore all aforesaid about the work
with QA-operator can be used for any their group and
for any QA-program as a whole. That is why the
execution of QA-operator by the designer is similarly
experimenting. Thus the designer has a flexible
possibility for the experimental research of any task
being solved conceptually. This is the principal feature
which distinguishes pseudo-code QA-programs from
programs written in pseudo-code languages of
different types including the class of Domain Specific
Languages (Karsai et al., 2009).

The specificity of the described kind of the designer
activity is the work controlled by QA-program
executed by the designer interacting with the
accessible experience. To underline this specificity the
specialized role “intellectual processor” was
constructively defined and effectively being supported
in the use of WIQA (Sosnin, 2012). This role is
additional for other kinds of roles applied in
conceptual designing (Borges et al., 2012).

Designer_k

Plug-ins:
l Team model

Editor
Compiler
 Interpreter

 ….

Toolkit WIQA

................

QA-memory

................

QA-program_i

 ….

 ….
operator Q2.5.1

A2.5.2.

operator Q2.5.3

operator Q2.5.2

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 1 (Maiden Edition), July, 2013

 8

C. Describing of Experiments
As told above any fulfilled experiment should be

presented by the designer in the understandable and
reusable form. In the offered version of experimenting
the function of such a form is being fulfilled by the
typical integrated model of the precedent shown in
FIGURE 6.

FIGURE 6. FRAMEWORK OF PRECEDENT MODEL
The scheme, fulfilling the function of framework

F(P) for models of precedents, allows integrating the
very useful information accompanying the experiment
process in its actions indicated above.

The central place in this model is occupied the
logical scheme of the precedent. The scheme explicitly
formulates “cause-effect regularity” of the simulated
behavior of the designer. Framework F(P) includes
following components:

• textual model PT of the solved task;
• its model PQA in the form of registered QA-

reasoning;
• logical formulae PL of modeled regularity;
• graphical (diagram) representation PG of

precedent;
• pseudo-code model PI in QA-program form;
• and executable code PE.
Any component or any their group can be

interpreted as projections of F(P), the use of which
allow to build the precedent model in accordance with
the precedent specificity. But in any case the precedent
model should be understandable for its users.

All built models of precedents are divided in two
classes one of which includes models embedded in
Experience base of WIQA used by the team not only
in a current project. The second class includes models
only for the current project.

Experience base of assets
In the experiential approach the presentation of

assets is oriented on the behavior of designers in the
asset reuse. Therefore the basic forms for presenting
the assets in Experience Factory are QA-models and
QA-programs of different types and also their
compositions. The kernel of compositions consists of
precedents’ models combined in Base of Precedents.

Potential of LWIQA is sufficient for QA-modeling and
QA-programming the assets of following kinds:
previous projects, valuable project solutions,
prototypes, documents, interface samples, schemes of
reports, standards, frameworks, guides, patterns,
samples of different types, schemes of modeling,
structure of the software, packages of the source code,
tools, platforms, infrastructure and other valuable
units.

Models of assets are registered in the catalog of
Experience Base and allocated in its corresponding
sections (as shown in figure 7). Only one part of assets
is placed in Precedent Base. Interaction with accessible
assets provides by their catalog implemented as
specialized plug-ins of WIQA.

FIGURE 7. STRUCTURE OF EXPERIENCE BASE
The special subsection of Experience Base is

assigned for workflow patterns. Any unit of this
subsection has a corresponding pseudo-code
description. QA-programs of workflow patterns
include operators of the specialized subset of LWIQA.

Conclusion
The offered approach is aimed at managing the

decrease of the complexity in designing of SIS by the
use of real time interactions of designers with the
accessible experience. Moreover, such interactions are
being programmed so that any created program
describes the unit of the designer work in the process
of designing. Such a possibility is being provided by
means of pseudo-code programming of the designer
activity in the language LWIQA. The specificity of
pseudo-code programs in this language is being
defined by their uploading in the memory which is
destined for coding question-answer reasoning. QA-
programs are one of kinds of reasoning of this type.
QA-programming can be used as for normative tasks
so for tasks connected with scientific and human
workflows.

Projects

Ontology

Base of Precedents

Library of QA-Programs

Other Assets

Documents

Experience Base

Catalog

Name of precedent Pi:

 while [logical formulae (F) for motives M ={Mk}]
as [F for aims C = {Cl}]

 if [F for preconditions U’= {U’n}],
 then [plan of reaction (program) rq],
 end so [F for post conditions U” = {U”m}]

 there are alternatives {Pj(rp)}.

c
h
o
i
c
e

Designer_k

Task

P
r
o
j
e
c
t
i
o
n
s

PE

PI

PG

PL

PQA

PT

Covenant Journal of Informatics and Communication Technology (CJICT) Vol. 1, No. 1 (Maiden Edition), July, 2013

 9

In experimenting the investigated behavioral units
are modeled as precedents. Such a form of a human
activity is natural because intellectual processing of
precedents lays in the base of the human experience.
Experimenting the designers evolve the accessible
experience by using real time interactions with its
current state. This feature has found its normative
specifications in the role “intellectual processor”
playing of which by designers is being supported by
the toolkit WIQA. In collaborative way-of-working
this role can be used additionally to any other role of
the technology applied in conceptual designing.

The toolkit opens the possibility for the separate
execution of any operator by the designer playing the
role of the intellectual processor. Before and after the
execution of any operator of any QA-program the
designer can check or investigate its preconditions and
post-conditions. Moreover the investigated operator
can be changed and evolved as syntactically so

semantically, for example with the help of additional
attributes.

The designer has the possibility to test any QA-
program and improve it. Then this program (as the
corresponding asset) can be included to the specialized
library. Assets of the similar type are played the role of
techniques any of which can be included to future
processes of designing as in the current project so in
the development of the next SIS . The complexity is
being reduced because the library of programmed
assets is the source of automated resources each of
which can be included to the program of designer
activity through calling the name of the asset. In
WIQA-environment the assets are embedded to the
repository (Experience Base) which is a kernel of
Experience Factory. Such Experience Factory supports
the real time interactions with the repository for
designers from a number of groups each of which uses
separated WIQA.

REFERENCES
Basili, V. R., Lindvall M. & Costa, P. (2001). Implementing

the experience factory concepts as a set of experience
bases. Proceedings of the 20011 International
Conference on Software Engineering & Knowledge
Engineering, 102-109.

Basili, V. R. (2013). Learning through Application, SEMAT
position. http://semat.org/wp-content/uploads/2012/03/

Borges, P., Machado, R.J. &Ribeiro, P. (2012). Mapping
RUP Roles to Small Software Development Teams.
Proceedings of the 2012 International Conference on
Software & System Process, 190-199.

Cares, C., Franch, X. & Mayol, E. (2006). Perspectives
about paradigms in software engineering. Proceedings of
the 2006 2nd International workshop on Philosophical
Foundations on Information Systems Engineering
(PHISE’06), 737-744.

El Emam, K. & Koru, A.G. (2008). A Replicated Survey of
IT Software Project Failures. IEEE Software 25 No. 5,
84-90.

Framework for Software Product Line Practice, Version 5.0.
http://www.sei.cmu.edu/ productlines/tools/framework.

Held, M. & Blochinger, W. (2009) Structured collaborative
workflow design, Future Generation Computer Systems,
vol.25 no.6, 638-653.

Henninger, S. (2003). Tool Support for Experience-based
Software Development Methodologies. Advances in
Computers 59, 29-82.

Karray, F., Alemzadeh, M., Saleh, J. A. & Arab, M. N.
(2008). Human-Computer Interaction: Overview on
State of the Art, Smart sensing & intelligent systems 1
No. 1, 138-159.

A publication of Covenant University Journals:
journals.covenantuniversity.edu.ng

Karsai, G, Krahn, H., Pinkernell C., Rumpe B., Schindler
M. & Völkel, S. (2009). Design Guidelines for Domain
Specific Language. Proceedings of the 9th OOPSLA
Workshop on Domain-Specific Modeling, 7-13.

Li, M. & Vitanui, P. (2008). An Introduction to Kolmogorov
Complexity & Its Applications. Series: Text in Computer
Science, 3rd ed., Springer.

Sjoberg D.I. K., Dyba T. & Jorgensen, M. (2007). The
Future of Empirical Methods in Software Engineering
Research. Proceedings of the 2007 workshop Future of
Software Engineering, 358-378.

Sosnin, P. (2012). Experiential Human-Computer
Interaction in Collaborative Designing of Software
Intensive Systems. Proceedings of the 11th International
conference on Software Methodology and Techniques,
180-197

Sosnin, P.(2012) Pseudo-code Programming of Designer
Activity in Development of Software Intensive Systems.
Proceeding of the 25-th International conference on
Industrial Engineering and other Applications of Applied
Intelligent Systems (IEA/AIE 2012), Dalian, Chine,
457-466.

Van der Aalst W.M.P. & Hofstede, A.H.M. (2004).
Workflow Patterns Put Into Context. Software and
Systems Modeling 11 No.3, 319-323.

Webber, B. & Webb, N. (2010). Question Answering. In
Clark, Fox & Lappin (eds.): Handbook of Computational
Linguistics and Natural Language Processing.
Blackwells.

Xu, S. & Rajlich, V. (2005). Dialog-Based Protocol: An
Empirical Research Method for Cognitive Activity in
Software Engineering. Proceedings of the 2005 ACM/IEEE
International Symposium on Empirical Software
Engineering, 397-406.

