

Covenant Journal of Informatics & Communication Technology. Vol. 5 No. 1, June, 2017

 An Open Access Journal Available Online

Design and Implementation of a Low-Cost Low

Interaction IDS/IPS System Using Virtual Honeypot

Approach

Olamilekan Shobayo
1,2

 & Marcos Rodrigues
1

1
Sheffield Hallam University, Sheffield, United Kingdom

2
Covenant University, Ota, Nigeria

Contact(s). m.rodrigues@shu.ac.uk,

 olamilekan.shobayo@covenantuniversity.edu.ng,

Abstract— Network attacks have become prominent in the modern-day web

activities and the black hat community have also gain more sophistication with

the tools used to penetrate poorly guarded or unguarded networks. Network

security administrators have also moved swiftly to counter the threats posed by

the attacker with different network intrusion detection and monitoring tools.

Low interaction honeypots were developed to entice hackers without causing

any serious downtime to the production network, so that their activities and the

way they access the network can be studied with a minimal setup cost. In this

work, a low interaction virtual honeypot using the Honeyd daemon to lure

attackers to the network and alert the attacker's activities in the network using

the Snort IDS. The data captured is analysed based on the protocol and port

used. It is then validated by analysing the attacker's activities once it is logged

and accessed through Wireshark protocol analyser.

Keywords/Index Terms—Low Interaction Honeypot, High Interaction

Honeypot, Intrusion Detection and Prevention, Traffic monitoring

1. Introduction

According to the survey carried out by

(Richardson, 2010), Cyber-attacks have

become a pertinent issue that have cost

organisations worldwide an estimated

$150 million stating that much of attack

targeted to organisations ranks from

Malware infection 67%, Fraudulently

represented as a sender of phishing mail

37%, laptop or mobile hardware theft or

loss 34% and Denial of service 17%.

During the past decade, there has been

numerous network security tools

developed for organisations which

includes Firewalls and NIDS. Firewall

for example, helps protect these

organisations by preventing an attacker

from gaining access to the internal

network and tools such as NIDS allows

organisations to detect and identify

attacks, provide mechanisms that react

to the detected attacks or at the barest

 48

Marcos Rodrigues & Olamilekan Shobayo CJICT (2017) 5(1) 48-64

minimum, reduces the effect of the

attack. But because attackers always

come with new tricks and these tools

lacks the functionality of detecting or

fending off the newer attacks and the

collection of more information about the

attacker's activities, skills and methods.

For example, Signature based IDS's

does not contain the attack signature of

a newer attack in its signature database,

therefore it will allow an attack to get

through to the network if its signature is

different from the one contained its

database.

Nowadays, for organisations to protect

their networks and build efficient

security systems, it is necessary for

network security system developers to

gain the attackers knowledge and attack

plots (Anuar, et al., 2006). Many non-

profit organisations and educational

institutions have spent time to research

into cyber-attacks and analyse the

methods and tactics used by the so-

called Black hat community which act

against organisations production

network.

An important network tool that is used

by different organisation to monitor the

Black hat community is the Honeypot.

According to (Provos & Holz, 2008), a

honeypot is a closely monitored

computing resource that we want to be

probed, attacked or compromised. It is a

form a decoy system that is set up to

detect or confuse unauthorised attempts

on information systems. Honeypots also

allows us to analyse how attackers

explore system and network

vulnerabilities. Because honeypots have

no production values it constitutes an

extra cost when it is being set up in a

production network because of the extra

network components that is required for

the setup. As suggested by (Ayeni,

Alese and Omotosho 2013) Intrusion

detection has become a very delicate

matter over the last few years within the

broad realm of network security. With

so much advancement in hacking, if

attackers try hard enough, they will

eventually succeed in infiltrating the

system. Therefore, there is a need to

constantly or periodically monitor what

is taking place on a system and look for

suspicious behaviour. Vulnerabilities in

common security components such as

firewalls, security patches, access

control and encryption are inevitable, so

hackers take advantage of these

shortcomings to infiltrate the system.

(Sabah & Vandana, 2013) To reduce

cost, low interaction honeypots were

developed which will simulate the

network components instead of

incurring the cost of setting up the high

interaction counterpart with lesser

sophistication and richness of data as the

alternative forgone. This report focuses

on the low interaction technique for

honeypot deployment.

2. Background and related work

Network attacks as defined by

(Ghorbani, et al., 2010) ―is a set of

malicious activities to disrupt, deny,

degrade or destroy information and

service resident in computer networks‖.

Streaming of data through a network is

the main source of attack on that

network and its aim is to disrupt the

traffic going through that network and

making the network vulnerable to other

attacks by reducing its integrity and

confidentiality. Network attacks ranges

from an individual receiving an

obnoxious email from another

individual to attack on the components

of a network, important information and

49

Marcos Rodrigues & Olamilekan Shobayo CJICT (2017) 5(1) 48-64

critical data. Examples of attacks on

computers include email viruses,

worms, Trojan horses, unauthorised

access, amending data on a system by

taking advantage of a bug on the

software. To perpetrate these attacks,

the methods used by the attackers can be

generalised into Masquerading, Social

Engineering, Vulnerability Scanning

and functionality abuse.

Social Engineering attack is used to

mislead its prey by persuading them

aggressively to give their authentication

details (Amitabh, et al., 2004).

Examples are email phishing and Trojan

Horse; Masquerading attack is when the

attacker poses as a legitimate user in a

network to gain higher privileges than

they should i.e. logging in as an

administrator into a network which they

are not. This is achieved by bypassing

the means of authentication with stolen

logon passwords and user identities;

Vulnerability scanning methods are

software bugs attached to a legitimate

program which the attacker uses to

obtain access illegally to a system.

Examples include improper handling of

temporary files, race conditions and

buffer overflows.

In order to manage honeypot system

using web interface, (Anuar, et al.,

2006) created Honeyd@WEB. Through

web interface, Honeyd@WEB was used

to design a low-involvement (low-

interaction), production, dynamic and

manageable honeypot. It combines

techniques such as "Deception ports" on

production network to simulate

honeypot services which are used in

place of well-known services such as

HTTP, POP, DNS and FTP and

"proximity Decoys" where honeypots

decoys are situated very close to the

production host i.e. in the same local

subnet. The main purpose of their

research was to detect real systems and

the Honeyd@WEB solution was

deployed in the internal network to

detect internal attackers.

Similarly, they also used the

Honeyd@WEB to detect firewalls that

are not configured properly and to detect

worms and Trojans.

(Vollmer and Manic 2014), created a

deceptive virtual host (low interaction

honeypot) by combining 3 components

namely:

- Network Entity Identification (NEI).

- Dynamic Virtual Host (DVH)

configuration.

- Virtual Host Instantiation (VHI).

The NEI component is used to monitor

the network traffic by extracting the

source, destination and activities of each

port. They evaluated tools like P0f,

Ettercap, Snort, TCPdump and Ntop to

provide network host identification.

The DVH component is configured

using Honeyd as it provides autonomous

configuration with low expenses as

compared to the manual (High

interaction honeypot) configuration. Its

main objective is to automatically

configure and update a random amount

of virtual host dynamically based on the

data it gathered from the actual host

using Ettercap. The DVH components

was described in 4 sections namely OS

selection, OS name mapping, MAC

creation and Network service emulation.

The VHI and update component is used

to instantiate the virtual host. They

created an initial configuration file and

made changes to the configuration file

of the virtual host running under

Honeyd while the system is running.

 50

Marcos Rodrigues & Olamilekan Shobayo CJICT (2017) 5(1) 48-64

(Kaur and Saini 2013), created a

Honeynet to analyse network traffic and

prevent attacks on protocol and port

basis. The Honeynet was deployed to

capture keystrokes of the attacker's

activities and the captured data was

analysed for the purpose research.

Honeyd was used as the low interaction

honeypot to create virtual host and

simulate some services on them

including TCP, UDP and ICMP. For the

high interaction honeypot, a real host

running on Windows XP SP2 operating

system was used and Sebek-win-3.0.5

was also used as the data capture tool. A

Honeywall is also configured in the

setup with all three NIC's attached to the

Honeywall system used at once. The

Honeywall connected the Honeynet

(Low and High interaction honeypot)

and the production network in a bridge

mode. This bridge mode made it very

difficult for the attacker to detect the

honeypot.

The Honeywall was configured not to

have any IP address except for the

interface connected to the management

machine. This feature enables the

Honeywall to appear in a stealth mode

and transparently control and detect all

information that moves across it. When

malicious activities are detected, it is

forwarded to the Honeynet machines i.e.

(the Low and High interactions

honeypots) and the activities are logged

and the data captured are analysed.

HPing3 was used to launch attacks on

the honeypots from a computer

connected to the production network,

the attacks launched includes: SYN flag,

DoS, Smurf attack and flooding by

using IP spoofing. The honeypots could

capture the launched attacks and the

types of attacks were shown using the

Sebek software.

3. System Architecture

The architectural model of the

implemented virtual honeypot network

is shown in Figure 1 and it is achieved

using the Honeyd software to simulate

the virtual hosts that can be interactive

with an attacker and used to provide

arbitrary services like TCP, UDP and

ICMP to deceive the attacker into

thinking that it is communicating with a

real computer on a real network.

 Although the Honeyd software can also

be configured to log the activities of the

attacker, the Snort IDS/IPS software

was used for the logging of these

activities because it provides a more

powerful analysis and signature

categorisation of the attacker's activities.

Both software provides both logging

and analysis characteristics and to make

this work more robust, the Wireshark

network protocol analyser was selected

to give detail analysis of the attacker’s

activities on the network by monitoring

the inflow and outflow of data across

the host computer on the interface

connected to the internet which is also

configured as the same port where the

honeypot and the IDS/IPS in listening

to.

The system architecture in Figure 1

shows the experimental design of the

proposed technique for the deployment

of the IDS/IPS system. As seen from the

diagram, the IDS system is placed

behind a firewall. The firewall helps

filters traffic between a protected

(internal) network and an unprotected

(external) network. This also helps to

make the attacker thinks he is attacking

a real network.

51

Marcos Rodrigues & Olamilekan Shobayo CJICT (2017) 5(1) 48-64

It also keeps unwanted packets from

entering the protected network.

Honeypots can either be placed in the

front of a firewall, in the DMZ, or

behind a firewall. When dealing with

IDS/IPS networks, as suggested by

(Annamma , et al., 2011) it is always a

good practice to setup the honeypots

behind the firewall to appear as a

legitimate network to the intruder.

Therefore, for this design, I have chosen

to implement the Honeypot behind the

firewall to be in accordance to industry

standard and to preserve the

authentication of the Honeypot concept.

3.1. Virtual Honeypot Implementation

The virtual host is used to simulate

network delay and packet loss rate. The

simulated network consists two virtual

host and two Cisco routers. The virtual

router 1running as Cisco 2600 series

personality is used to separate the

network 192.168.7.0/24 and the network

172.16.0.0/24. Virtual router 2 also

running on the cisco 2600 personality is

used to separate the network

172.16.0.0/24 and the network

172.20.0.0/24. Virtual router 1 access

address is 172.16.0.1 and the virtual

router 2 access address is 172.20.0.1.

The virtual host 1 in the 172.16.0.0/24

network with the IP address

172.16.0.2/24, running on the Linux

2.6.20-1 as the personality, while the

virtual host 2 is on the network

172.20.0.0/24 network with the IP

address 172.20.0.2/24 and running

Windows XP professional as its

personality.

 52

Marcos Rodrigues & Olamilekan Shobayo CJICT (2017) 5(1) 48-64

FIGURE 1. IMPLEMENTED SYSTEM ARCHITECTURAL DESIGN

The Virtual Honeypot

Internet

Virtual Host 1
Linux 2.6.20-1
IP: 172.16.0.2

Network Switch

Network firewall

Virtual Router 2
Cisco 2600

IP: 172.20.0.1

Virtual Router 1
Cisco 2600

IP: 172.16.0.1

Virtual host 2
Windows XP professional

IP: 172.20.0.2

ADSL Router
IP: 192.168.7.6

Attacking Host
IP: 192.168.7.211

Host Computer
running on Ubuntu 12.04.5

LTS Desktop
IP: 192.168.7.55

Data control: Honeyd
Data capture: Snort

Data analysis: Wireshark

53

3.2 Configuring the Honeyd

When configuring the Honeyd software

to set up the virtual honeypot, it must be

ensured that IP forwarding is disabled

on the host computer that houses the

Honeyd (Provos & Holz, 2008).If IP

forwarding is enabled, then IP packets

which the Honeyd receives for the

virtual honeypots are forwarded to

another computer in the 192.168.7.0

network where the host computer is

located. In order to disable IP

forwarding, the command below was

issued on the host computer:

echo 0 > /proc/sys/net/ipv4/ip_forward

Before running Honeyd, it was ensured

that the host computer can answer to all

ARP requests which are sent by the

router for the IPs of the virtual

honeypots. This is achieved using the

farpd tool for spoofing the ARP requests

(Provos, 2008). It listens on the host

network interface, i.e. the 192.168.7.0

network interface and responds with the

MAC address of the Honeyd for the

received ARP requests on the

corresponding IP addresses. The

incoming packets can be received

through the Honeyd network interface

with the help of the farpd. It allows for

easy monitoring and capturing traffics

which are sent to the virtual honeypots.

This is achieved by running the

following command on the host

computer:

farpd <IP address of virtual honeypot]>

-i eth0

where eth0 is the physical network

interface of the host computer. shell),

TCP port 20 (FTP), TCP port 88

(Kerberos authentication system) and

UDP port 161 (SNMP). These ports are

set to open for the attacker to establish

connections to the virtual honeypot

network only and it's not made to run

any scripts or log any activities as these

activities are implemented with the snort

IDS system. The drop action is used to

drop the entire packet to the port by

default. Honeyd runs as a background

process and as a user nobody which

provides the security embedded within

the Honeyd framework. In order to run

the Honeyd configuration from the

honeyd.conf file, the following

command was issued on the host

computer

Some part of the main commands used

in the Honeyd configuration file to set

up the virtual honeypot network is

shown in table 1:

54

Marcos Rodrigues & Olamilekan Shobayo CJICT (2017) 5(1) 48-64

TABLE I. HONEYD CONFIGURATION COMMAND

The create command creates a template

whose personality is 'linux' and it binds the

honeypot's IP address to the personality. The

set and add commands is used to change the

configuration of the personality. The set

command helps to assign the personality

"linux 2,6.20-1 (Fedora Core S)" from the

Nmap fingerprinting file. The uptime of the

host shows how long the system has been

running. The uptime was spoofed to be

equal to 60 days i.e. 5184000 seconds to

give enough room from the time of writing

the configuration of the virtual honeypot to

the time when the attack will be simulated.

The add command opens the ports on the

virtual honeypot, and specifies which

services should run on each port. For the

attacker to feel that it is attacking a real

system on a real network, the open action is

used to open most of the well-known ports

such as the TCP port 23 (telnet), TCP port

22 (secure:

 # honeyd -d -i eth0 172.16.0.0/16

172.20.0.0/16 -f/etc/honeypot/honeyd.conf

At this point, Honeyd start listening on eth0

interface and answering to the packets for

the network address 172.16.0.0/16 and

172.20.0.0/16 respectively of the configured

virtual honeypots.

####### Honeyd configuration file #############

create linux

set linux personality "linux 2.6.20-1 (Fedora Core S)"

set linux uptime 5184000 # sixty days

set 172.16.0.2 ethernet "3f:12:4e:14:d0:32"

set linux default tcp action block

set linux ethernet "Dell"

add linux tcp port 23 open

add linux tcp port 22 open

add linux tcp port 20 open

add linux tcp port 88 open

add linux udp port 161 0pen

55

Marcos Rodrigues & Olamilekan Shobayo CJICT (2017) 5(1) 48-64

Ping, Nmap, telnet and traceroute tools was

used to test that the Honeyd installation is

working as configured and also to see if it is

correctly receiving network traffic.

3.3 Configuring the Snort IDS

According to (Roesch, et al., 2015), Mostly

all network cards have features named

"Large Receive Offload" (lro) and "Generic

Receive Offload" (gro). With these features

enabled, the network card performs packet

reassembly before they become processed

by the kernel. Therefore, it is recommended

to turn off both the LRO and GRO because

Snort will truncate packets larger than the

default snaplen of 1518 bytes. To disable

LRO and GRO the following command was

run on the host computer:

sudo apt-get install -y ethool

sudo ethool -K eth0 gro off

sudo ethool -K eth0 lro off

After snort was installed, some files and

directories which are required by snort were

created and permissions were set on the

files. Snort keeps all configurations and rule

files in etc/snort, and all alerts generated by

Snort will be logged to /var/log/snort. This

is achieved running the following

commands on the host network

sudo groupadd snort

sudo useradd snort -r -s /sbin/nologin -c SNORT_IDS -g snort

sudo mkdir /etc/snort

sudo mkdir /etc/snort/rules

sudo mkdir /etc/snort/preproc_rules

sudo touch /etc/snort/rules/white_list.rules /etc/snort/rules/black_list.rules

/etc/snort/rules/local.rule

sudo mkdir /var/log/snort

sudo mkdir /usr/local/lib/snort_dynamicrule

sudo chmod -R 5775 /etc/snort

sudo chmod -R 5775 /var/log/snort

sudo chmod -R 5775 /usr/local/lib/snort_dyamicrules

sudo chown -R snort:snort /etc/snort

sudo chown -R snort:snort /var/log/snort

sudo chown -R snort:snort /usr/local/lib/snort_dynamicrules

In order to write the configuration for

snort to capture the ongoing

communications with the different

protocols configured on the Honeyd, the

Snort configurations file at

etc/snort/snort.conf. When snort is run

with this file as an argument, it tells

snort to run in NIDS mode.

Before Snort is ran, some edits were

made to the default configuration file by

commenting out of individual rule files

that are referenced in the snort

configuration file. The following line of

command was used to out all the ruleset

in the snort.conf file

sudo sed -i 's/include \$RULE_PATH/#include \$RULE_PATH/ ' /etc/snort/snort.conf

 56

Marcos Rodrigues & Olamilekan Shobayo CJICT (2017) 5(1) 48-64

In order to change the configuration file, Gedit text editor was installed and the

following command was used to edit the snort.conf file

 sudo gedit /etc/snort/snort.conf

Because the attack sequence to be

alerted by the Snort software were to be

simulated, the Snort rules to capture the

costumed attack signatures as written in

the local.rule configuration file. The

local.rule file was enabled by

uncommenting the #include

$RULE_PATH/local.rule. Once the

configuration file is ready, Snort will

verify that the file is valid and all the

necessary files that it references were

correct.

Currently, Snort does not have any

loaded rules i.e., the rule files referenced

in snort.conf is empty. The Snort rule

was written into the

etc//snort/rules/local.rule. By

uncommenting the #include

$RULE_PATH/local.rule on the Snort

configuration file, Snort was instructed

that the local.rule files should be loaded.

When Snort loads the file on start up, it

will see the rule that was created and the

rule will be implemented on all traffic

incoming and outgoing on the eth0

interface.

To alert every ICMP packets that is

moving through the eth0 interface, the

following command was written into the

etc/snort/rules/local.rule file

 alert ICMP any any -> $HOME_NET any (msg:"ICMP alert" ; sid :10000001; rev:001;)

The diagram in Figure 2 shows the captured message on the Snort console.

 FIGURE 3. SHOWING THE RULE PORT COUNT

As seen from the Figure 2 above, the

Snort IDS have could detect rules for

any ICMP, UDP and TCP packets that is

destined for the host computer through

the eth0 interface. Snort was then started

in the NIDS mode, and was told to

 57

Marcos Rodrigues & Olamilekan Shobayo CJICT (2017) 5(1) 48-64

output any alert directly to the console.

Snort was run from the command line

using the following flags

:

-A console The 'console' option prints fast mode alert to stdout

-q Quiet mode. Don’t show banner and status report

-u snort Run Snort as the following user after startup

-g snort Run Snort as the following group after startup

-c /etc/snort/snort.conf The path to the snort.conf file

-i eth0 The interface to listen to

 The command issued according to the flag listed above is shown thus:

sudo /usr/local/bin/snort -A console -q -u snort

-g snort -c /etc.snort/snort.conf -i eth0

3.4 Configuring the Wireshark
The host system is configured with a DEB-based distribution, i.e. the Ubuntu 12.04.4

LTS operating system, Wireshark was installed from system repositories through the

terminal window and the following commands were used:

 Sudo apt-get install wireshark

4. Validation of Result

In this section, some validation test was

carried out to verify the workability of

the implemented system by carrying out

different attack simulation on the system

setup.

Hping3 (Sanfilippo, 2010) was used to

launch simulated attack on the virtual

honeypot setup to test the functionality

of the system. The simulation does not

actually project a hacking scenario, it

proves to be effective in checking how

the virtual honeypot works, how the

Snort IDS logs the simulated attack

sequence and how the data is captured

using the Wireshark network protocol

analyzer. The hping3 was installed in

the attacking host shown in the diagram

in Figure 1. Attacks to simulate the

launching TCP, UDP and ICMP packets

are being directed to the honeypot setup.

The command that is used to carry out

the attack sequence is the hping3

command. It requires administrative

privileges to run it from the attacking

host machine. The attacking host

machine is presumed to be located on

the production network i.e. it simulates

that an attacker has hacked into the

production network and has gained

access to the network facilities with the

rights to communicate with every

computer on the production network

including the virtual honeypots setup

with the aim of bringing down the

network and causing downtime.

A general hping3 command that can be

used to send attacking packets to a host

is shown below

 58

#hping3 <victim IP> -V –c 1000000 –d 512 –S –w 32 –flood –rand-source

Also, to spoof the source IP address, the –a command option can be used. When the

spoofing option is used, the source IP of the attacker is concealed, albeit the honeypot

system still detects the attack. The command option used by hping3 is shown below.

4.1 Scenario 1: Use of TCP SYN Flag to Flood the Host Machine
The command used to create a TCP SYN flag flood on the attacker’s machine is shown

below

 #hping3 <Victim’s IP> -V -c 10000 –d 512 –S –w 32 --flood

Immediately the command is run from

the attacking host, connection is setup

with the honeypot and data is being

received through the TCP protocol. To

receive TCP connection with the host

computer, it uses the SYN flag and an

acknowledgement is received for the

connection. As soon as a connection is

established, the command allows TCP

packets to flood the host (victim’s)

computer. These activities are captured

and logged against the Snort IDS rule

and the result

is output to its console. The Wireshark

application is also started to listen on the

eth0 interface where the virtual

honeypot (Honeyd) and the Snort IDS is

also configured. The figure 3 below

shows the data that was logged and

captured
.

 FIGURE 3. SNORT ALERT OF THE TCP FLOOD

V Verbose-mode

c Packet-count

d Data-size

S SYN flag

w Window-size

 59

Data from Figure 3 show that TCP

packets are being sent from a source IP

address of 192.168.7.211 which shows

that the attacker is on the same subnet as

the honeypot system. Once the

command to run the Snort IDS is

started, the TCP packed flood begins to

be logged on the console. The first line

from the figure shows how both host

negotiates connections with every

packet sent and every alert logged. An

acknowledgment is also received at the

reverse end of the communication. The

host system established the connection

using a dynamically assigned port

number which it held for the length of

the communication, while the assigned

outgoing TCP port of the attacking host

increases with a value of 1 for the next

establishment of connection. The log

also shows the output message

configured on the local.rule file of the

Snort IDS, showing both the sequence

number and the priority level of the rule.

 FIGURE 4. WIRESHARK CAPTURED TCP DATA

The Wireshark provides more insight to

the TCP attack flood, when it is filtered

to express TCP transactions only. The

details from the frame number 37

selected above depicts a sent TCP frame

from the attacker’s machine. It shows

the attacking host MAC address and the

type of computer from which the attack

is propagated (in this case a VMware

machine). This data can help to track the

location of the attacker and to prosecute

them. It also shows the aggregated

amount of flow, source byte, source

packet, and destination flow and

destination packets. The large amount of

TCP flow confirms the flooded data

from source to destination.

4.2 Scenario 2: Use of UDP Packets to

Flood the Host Machine

The command used to launch the UDP

flood attack on the honeypot system in

this scenario is shown below:

 #hping3 <Victim’s IP> -V -c 10000 –d 512 –S –w 32 -2 --flood

 60

The difference from the command used

to flood the TCP packets is the -2

command. It is the hping3 command hat

is used to flood UDP packets. The

default command without the -2 will

only launch TCP packets. Since UDP

does not require a connection

establishment like the TCP, the

attacking host starts sending packets

immediately the command is run. The

Snort IDS alert is shown in Figure 5.

 FIGURE 5. SNORT CAPTURE OF UDP FLOOD PACKETS

The Snort IDS logs an ICMP packet

every time a UDP packet is sent to the

honeypot system. The hping3 tool uses

the ICMP to generate a form of

connection with the host before flooding

it with the UDP packet. The destination

port is 0 but all the unassigned port

numbers between 0-65535 was used by

the attacking host to flood the UDP

packets.

The Wireshark capture also depicts both

the ICMP and UDP packets and the

highlighted UDP packet also shows the

time the packet is sent in seconds, the

source and destination address of the

UDP packet. The Figure 6 below shows

the Wireshark capture

 61

 FIGURE 6. WIRESHARK UDP FLOOD CAPTURE

4.3 Scenario 3: Use of ICMP Packets to Flood the Host Machine

The command used to launch the ICMP flood attack on the honeypot system in this

scenario is shown below:

#hping3 <Victim’s IP> -V -c 10000 –d 512 –S –w 32 -1 --flood

The -1 command of the hping3 was used to generate the ICMP packet in this scenario.

The Snort IDS capture is shown Figure 7.

 FIGURE 7. SNORT CAPTURE OF THE ICMP FLOOD

As seen from figure 7, the rule captured

the ICMP packets coming from the

attacking host computer and it was

logged on the console of the Snort IDS.

The source, destination and port

numbers are shown as well.

 62

Marcos Rodrigues & Olamilekan Shobayo CJICT (2017) 5(1) 48-64

5. Conclusion

In this paper, a virtual honeypot setup

that combines Intrusion Detection

System has been presented. It can

capture all types data proposed to be

used to attack the network which

includes TCP, UDP and ICMP, and it

also gives a lot of information about the

attacking protocols via the Wireshark

network analyzing tool. Alerts from the

Snort IDS console and captures from

Wireshark reveals the protocols the

attacker is using.

Honeypots whether physical or virtual

are meant to emulate real production

networks at a level of operation, mostly

deploying the protocols that attackers

find interesting to obliterate. It is not of

full guarantee that a network would be

attacked or spoofed and most of the

security defense system might just end

up being redundant. This option will be

sure to provide a cheaper solution for

the decoy system.

References

Roesch, M., 2015. Snort. [Online]

Available at:

https://www.snort.org

Amitabh, M., Ketan, N. & Animesh, P.,

2004. Intrusion Detection in

Wireless Ad Hoc Ntwork. IEEE

wirless communications, Issue 04,

pp. 48-60.

Annamma , A., Runuka, P. B. & Abhas,

A., 2011. Design and Efficient

Deployment of Honeypot and

Dynamic Rule Based Live

Network Intrusion Collaborative

System. International Journal of

Network Security & its

Application, III(2), pp. 52-65.

Anuar, N. B., Zakaria, O. & Yao, C. W.,

2006. Honeypot Through Web

(Honeyd@WEB): The Emeging

of Security Application

Integration. Informing Science

and Information Technology,

III(1), pp. 47-56.

Ghorbani, A. A., Lu, W. & Tavallaee,

M., 2010. Network Intrusion

Detection and Prevention. 1st ed.

Boston: Springer Verlag.

Kaur, G. & Saini, J. S., 2013.

Implementation of High

Interaction Honeypot to Analyse

The Network Traffic and

Prevention of Attacks on

Protocol/Port Basis. International

Journal of Computer Application,

LXII(16), pp. 22-29.

Provos, N., 2008. Development of the

Honeyd Virtual Honeypot.

[Online]

Available at:

http://www.honeyd.org/

Provos, N. & Holz, T., 2008. Virtual

Honeypots: From Botnet Tracking

to Intrusion Detection. 1st ed.

Boston: Pearson Education, Inc..

Richardson, R., 2010. 2010/2011

CSI/FBI Computer Crime and

Security Survey. [Online]

Available at:

http://gatton.uky.edu/FACULTY/

PAYNE/ACC324/CSISurvey2010

.pdf

[Accessed 12 June 2015].

Roesch, M., Green, C. & Caswell, B.,

2015. The Snort project: Snort

2.9.7.3. [Online] Available at:

https://s3. Amazon ws.com/snort-

org-

site/production/document_files/fil

 63

https://s3/

Marcos Rodrigues & Olamilekan Shobayo CJICT (2017) 5(1) 48-64

es/000/000/086/original/snort_ma

nual.pdf

Sabah, S. & Vandana, D., 2013.

Roaming Honeypots Along With

IDS in Mobile Ad-Hoc Networks.

International Journal of

Computer Application, LXIX(23),

pp. 15-21.

Sanfilippo, S., 2010. Hping Manpage.

[Online] Available at:

http://www.hping.org

[Accessed 15 February 2017].

Vollmer, T. & Manic, M., 2014. Cyber-

Physical System Security with

Deceptive Virtual Host for

Industrial Control Networks.

IEEE Transanctions on Industrial

Informatics, X(2), pp. 1337-1347.

Wang, J. & Zeng, J., 2011. Construction

of large-scale Honeynet Based on

Honeyd. Procedia Engineering,

2011, Vol.15, pp.3260-3264,

XV(1), pp. 3260-3264.

Weizhe , Z., Hui , H. & Tai-hoon , K.,

2013. Xen-based Virtual

Honeypot System for Smart

Device. Springer Science and

Business Media, III(2), pp. 1-18.

Zhou, Z., Chen Zhongwen, Z., Zhou

Tiecheng, Z. & Guan Xiaohui, Z.,

2010,. The study on Network

Intrusion Detection System of

Snort. International Conference

on Networking and Digital

Society, II(1), pp. 194-196.

 64

