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Abstract- The enhancement of security of information using symmetric key is 

the demand of industry and society. For sharing huge files and data symmetric 

key algorithms is first choice.  This paper presents sparse matrix based 

approach (SAVK) for symmetric key based cryptosystem, exploiting location 

information for enciphering and deciphering of user‟s information. The sparse 

based method has been analyzed with three variants and performance of these 

approaches has been presented. The benefit of location information for 

encryption or decryption of information will find its applicability in moving 

low power gadgets, IOT components and auditing of cryptosystems. 

 

Introduction   

Secure information exchange is 

achieved by cryptographic algorithm. 

Asymmetric cryptic algorithms are not 

preferred for big sized files or in 

formations. Symmetric key based 

algorithms are suitable for 

recommended for cloud based 

information repositories. AES is the first 

choice as compared to DES, 3DES, 

BlowFish, RC6 ,Two Fish etc. To 

improve the performance and increase 

the degree of security Automatic 

Variable Key (AVK) based approach 

has been proposed by (C.T. Bhunia, 

2008).Variety of approaches of AVK 

has been proposed in literature.(Prasun, 

2008).Automatic Variable Key (AVK) 

approach is better alternative over 

longer sized key. AVK attempts to keep 

key-size constant and changes entire key 

in successive sessions. The optimum 

size of key been approximated up to 7 or 

8 characters.(Shaligram and R.S. 

Thakur, 2015) . One approach of AVK 

is generation of key using Fibonacci-Q 

matrix (Shaligram, 2012) where by 

choosing various terms corresponding to 

different values of input parameters new 

keys of fixed length is generated. 

Another approach of for moving 

information sending and receiving 

equipment using , the location based 

AVK scheme has been discussed in this 

paper together with the realization and 

analysis.(Shaligram Prajapat, 2014) and 
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(Shaligram, 2016).  The  presented 

approach exploits the advantage of 

compact representation of sparse space 

with key variables using location 

information based (i, j) information for 

automatic variable key assuming the 

situation of moving transmitter and 

receiver for symmetric key based 

cryptosystem. The parameters only 

scheme have been used without 

exchanging entire key   and the 

parameters have been diffused for key-

construction using parameters only 

(shaligram,2016). The subsequent 

sections, present a scheme based on the 

sparse matrix approach for efficient and 

secure communication without using 

any key exchange. 
 

Definition and Related Work 

Sparse Matrix: A matrix of order very 

high dimension (m x n) having most of 

its member as zero.  The sparse matrix 

representation schema records 

information of only non-zero members 

and discards zero members (Gilbert et. 

al. 1992). The threshold needed to fall a 

given square matrix to be "sparse-

matrix" depends on the structure of the 

matrix, number of nonzero members and 

nature of operations to be performed on 

it. (W. H., Flannery et.al., 2014 ). By 

recording only nonzero member 

information provides substantial 

reduction in memory space. Depending 

on the number and distribution of the 

non-zero entries, different data 

structures can be used and yield huge 

savings in memory when compared to 

the conventional way of information 

representation. Consider matrix A of 

order 6 by 6. 

 

 

 

                 Figure 1: Physical location of data and corresponding data 
 

In Figure 1 the partitioning of a 

geographical or physical area into small 

addressable location where moving 

devices at a location (i, j) exchanging 

data dij. The corresponding logical 

equivalent matrix representation is 

shown as matrix A equation (1), where 

total 12 devices or information sharing 

nodes are currently located. The 

locations of these devices are 

represented as nonzero entry in the 

sparse matrix and only these 

information is recorded in compact 
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representation of sparse matrix. The equivalent sparse matrix of figure 1

. 

0 0 19 0 0 0

15 0 0 11 0 28

0 12 0 0 14 0

0 11 29 0 0 0

11 15 0 0 16 0

0 0 9 0 0 0

A

 
 
 
 

  
 
 
 
 

           (1)    

The Compact Sparse Matrix (CSM) representation of Sparse Matrix is equation (2). 

Header row 6 6 120

0 2 191

1 0 152

1 6 283

1 3 114

1 5 185

2 1 126

2 4 147

3 1 118

3 2 299

4 0 1110

4 1 1511

4 4 1612

5 2 1913

CSM

  
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
                  (2) 

By definition a sparse matrix may 

contain most of the member as zero, but 

actually what threshold is to be 

considered during implementation to be 

taken as a sparse matrix, is given by 

equation (4).  
 

Necessary condition for being sparse 

matrix 

Let „p‟ denotes the count of nonzero 

members of  A. For static memory 

allocation array A of size p would 

require 3-members (3-tuple) array 

storage for each nonzero member. To 

estimate reduction in storage space  

using compact way having only record 

of nonzero members using  such 

representation let us compute total space 

required for storing A , m x n integer-

members  in a 2-D array. Obviously, 
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      No.of rows (m)* . ( )* _  _  Numberofbytesrequired by A No ofcolumns n Size of integer    (3) 

 In CSM-version of spmat the memory efficiency can be achieved iff:  
 

3 *  *  _ _ _   *   *  _ _ _p Size of integer inBytes m n Size of integer inBytes

  

  

*

3

m n
p 

                              (4) 
 

In other words, when total count of non-

zero members is not exceeding 33% of 

the total count of members of entire 

matrix, then the compact storage 

representation of sparse structure would 

be beneficial. The matrix A may be 

represented more economically (in 

terms of space) using CSM if the 

conventional 2-D array representation of 

matrices is not used. Instead it is using 

representation of only  non zero 

members only.  Since 6 X 6 is the order 

of  illustration of Figure 1. Using  

matrix “A”, such that: no_of_rows(m) = 

6 :no_of_columns(n) = 6 

:no_of_member (Non zero entries p) = 

12. This can be expressed also in the [0] 

position of following spmat array: csm 

[0][0]. Nonzero members of the array A  

from index [1...no_of_member] is 

denoted as:{0, 2, 19; 1, 0, 15;  1, 3, 11; 

1, 5, 18;  2, 1, 12;  2, 4, 14;  3, 1, 11; 3, 

2, 29; 4, 0, 11; 4, 1, 15; 4, 4, 16; 5, 2, 9 

}. (Here notation „{ „ and „}‟ has been 

used for array to avoid confusion from 

reference /citation).CSM [ ][ ] 

information about a nonzero member 

has  three parts: 

1. An integer representing its 

row_index(i) or CSM[i][0].  

2. An integer representing its 

column_index(j) or CSM[i][1]. 

3. The nonzero data associated with (i, 

j)_ location is dij  or CSM[i][2]. 

 

 

Such a 3-tuple can be represented by a data structure with 3 fields:  
 

   1 0,2,19csm 
,

   2 1,0,15csm 
,

     3 1,3,11csm 
,

     4 1,5,18csm 
,

   5 [2,1,1 ]2csm 
,

     6 2,4,14csm 
,

     7 3,1,11csm 
,

     8 3,2,29csm 
,

     9 4,0,11csm 
,

     10 4,1,15csm 
,

     11 4,4,16csm 
,

     12 5,2,9csm 
… 

This representation not only saves 

memory but also stores key parameters 

that have been diffused in the first and 

second column of compact sparse 

matrix CSM[i][0] and CSM[i][1] 

respectively, where index i is variable 

subscript holding location of nonzero 

members in the compact sparse matrix 

CSM. The transformation of  Sparse 

matrix into Compact Sparse Matrix 

notation is shown in  Figure 2
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.  

Read order of 

Sparse Matrix A 

(m x n)  

 

r 1 

 

Start 

for i = 0 to m in 

steps of 1 do 

 

for j = 0 to n in 

steps of 1 do 

 

Sto

p 

[0][0] ; [0][1] ; [0][2] ;CSM m CSM n CSM r  

[ ][0] ; [ ][1] ;

[ ][2] ; 1;

CSM r i CSM r j

CSM r element r r

 

  

Transmit 

CSM  

 

member 

!=0  

 

T 

F 

     5 

 



Figure 2: Transformation of Sparse Matrix into Compact Sparse Matrix (CSM) 
 

Proposed Model of Encryption and 

Decryption (Diffused Parameters for 

Key SPARSE-AVK Algorithm) 

This approach uses Linear Sparse based 

Symmetric AVK method (LSAVK) in 

Figure 3, Quadratic Sparse based 

Symmetric AVK method (QSAVK) in 

Figure 4 and Cubic Sparse based 

Symmetric AVK method (CSAVK) in 

Figure 5, for encryption and decryption 

using 1-dimensional,2-Dimensional,3-

dimensional transformations using 

location parameters (i, j). Assuming the 

standard representation scheme the 

proposed algorithms works with row 

and column indexes starting from 1.  

Proposed Algorithms for Ensuring 

Security 

The transformations from plaintext to 

cipher text and recovery of plaintext 

from receiving cipher text will be done 

by from equations 5, to equation 10. 

Linear Sparse AVK based Cryptic 

process 

 For a cipher generation of linear 

transmission using location parameters  

  _ ' 2   *ciphertext CSM i a b plaintext                  (5) 

For reconstruction of plain text from transformed linear ciphers using location 

parameters  

 [' '[ ] 0
_ [ ]

'

][2]
[

[ ]
2]

[1]

iCSM CSM i
plaintext CSM i

CSM i


     (5) 
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Figure 3: Proposed Cryptic Process for LSAVK 

 

Quadratic Sparse based AVK Process (QSAVK) 

For cipher generation of quadratic transformation location parameters  
2  * ( ) *ciphertext a b data a b data         (7) 

For regeneration of plain text information from quadratic transformed cipher text 

2
 text   

( )

ciphertext a
plain

b a b




 
      (8) 
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Figure 4: Proposed Process for transformation using QSAVK 

 

Cubic AVK based Cryptic Process (CSAVK) 

For cipher generation of cubic transformation location parameters  
2 3  * ( ) * ( ) *ciphertext a b data a b data a b data               (9) 

For regeneration of plain text information from cubic transformed cipher text 

2 3
 text   

( ) ( )

ciphertext a
plain

b a b a b




   
          (10) 
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Figure 5: Proposed Process for transformation using CSAVK 

 

Proposed Sparse Based AVK 

Algorithms (SAVK) 

This section presents three cryptic 

algorithm based on linear(1-

D),Quadratic(2-D) and Cubic (3-D) with 

encryption and decryption 

functionalities namely, LSAVKEncrypt( 

) and LSAVKDecrypt( ) (Algorithm 1 

and Algorithm 2) uses linear 

transformation ,QAVKEncrypt( ) and 

QSAVKDecrypt( ) (Algorithm 3 and 

Algorithm 4)  uses quadratic  

transformation and CSAVKEncrypt( ) 

and CSAVKDecrypt( ) (Algorithm  5 

and Algorithm 5) using cubic 

transformation under proposed Sparse 

based Symmetric Encryption 

/Decryption (LSAVK Figure 4, QSAVK 

Figure 5, and CSAVK Figure 

5)Schemes). 
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Encryption Using Linear Transformations(1-D) 

Algorithm1  LSAVK-Encrypt ( Matrix  CSM[ ] )

{ // Receive plain text from sender with location information, generate cipher and transmit

      for each i from 1 to CSM[0][3] in steps of 1 do

       { a   CSM[i][0], b CSM[i][1], plaintext CSM[i][2];

          Generate Cipher Text CSM'[i][2] a+b*plaintext;

          Transmit Cipher Text( CSM'[ ])

         }

}

 


 

 

Decryption Using Linear Transformations(1-D) 

Sparse based Symmetric Decryption algorithms 
Algorithm 2 LSAVK-Decrypt ( Matrix  CSM'[ ] )

{ // Receive compact sparse matrix(cipher text) and  recover plaintext information

      for each i from 1 to CSM[0][2] in steps of 1 do

       { a  CSM'[i][ 0], b CSM'[i][1], plaintext CSM'[i][2];

          Generate Plain Text CSM'[i][3] ( '[ ][3] '[ ][0]) / '[ ][1];

          return  Plain-Text( CSM'[ ])

         }

}

CSM i CSM i CSM i

 

 

 

 

Encryption Using Quadratic Transformations(2-D) 

 

{ // Receive plain text from sender with location information

  // and generate cipher and transmit

      for each i from 1 t

Algorithm 3 QSAVK-Encrypt matr

o CSM[0][3] in steps of 1 do

  

ix 

   

CSM[ ]

  { a

2

 CSM[i][0], b CSM[i][1], plaintext CSM[i][2];

          Generate Cipher Text CSM'[i][2] a+b*plaintext+(a+b) *plaintext;

          Transmit Cipher Text( CSM'[ ])

         }

}

  


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Decryption Using Quadratic Transformations (2-D) 

 

 

  

  

Algorithm  4 QSAVK-Decrypt matrix CSM'[ ]  

//          

// and     _ ‟

    1  ' 0 2  

 ' 0 ,  

{

{

This algorithm accepts Compact Sparse Matrix with cipher text

recovers plain text in plaintext CSM i

for each i from to CSM do

Set a CSM i b CS       

 

  

2

' 1 ,  ' 2

'[ ][2] '[ ][0]
  _ ' ;

'[ ][1]

;

;

}

}

( '[ ][0] '[ ][1])

 _ '

 

M i plainText CSM i

CSM i CSM i
Generate plainText CSM i

CSM i CSM i CSM i

return PlainText CSM






 

 

Encryption Using Cubic Transformations(2-D) 

 

{ // Receive plain text from sender with location information

  // and generate cipher and transmit

      for each i from 1 t

Algorithm 5 CSAVK-Encrypt matr

o CSM[0][3] in steps of 1 do

  

ix 

   

CSM[ ]

  { a

2

3

 CSM[i][0], b CSM[i][1], plaintext CSM[i][2];

         Generate Cipher Text CSM'[i][2] a+b*plaintext+(a+b) *plaintext+

            (a+b) *plaintext;

          Transmit Cipher Text( CSM'[ ])

         }

}

  


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Decryption using Cubic Transformations (2-D) 
 

 

  

  

Algorithm  6 CSAVK-Decrypt matrix CSM'[ ]  

//          

// and     _ ‟

    1  ' 0 2  

 ' 0 ,  

{

{

This algorithm accepts Compact Sparse Matrix with cipher text

recovers plain text in plaintext CSM i

for each i from to CSM do

Set a CSM i b CS       

 

  

2 3

' 1 ,  ' 2

'[ ][2] '[ ][0]
  _ ' ;

'[ ][1] ( '[ ][0] '[ ][1]) ( '[ ][0] '[ ][1])

 _ '

 

;

;

}

}

M i plainText CSM i

CSM i CSM i
Generate plainText CSM i

CSM i CSM i CSM i CSM i CSM i

return PlainText CSM






   

  

 

Analysis of LSAVK, QSAVK, CSAVK 

with Variation in Input File Size, Size of 

Parameters 

The algorithm Linear AVK Encrypt (), 

Quadratic AVK Encrypt and Cubic 

AVK Encrypt accept compact form of 

sparse matrix entries and use location 

(index position) as a parameter for 

Cipher generation i.e. these algorithms 

utilize location information of nonzero 

member and converts the information 

into cipher text in linear, quadratic and 

cubic way. Similarly Linear AVK 

Decrypt () receives cipher text of the 

data item and based on its key (using the 

index position of the member as 

parameter) it recover, Quadratic AVK 

Decrypt ( ), Cubic AVK Decrypt ( ) 

original information. Since the key is 

not transmitted in the data transfer. So it 

becomes highly difficult to interpolate 

any information regarding plaintext or 

key.  Table-1, Table 2 and Table 3 

demonstrates the working of the 

proposed SAVK scheme. The sparse 

matrix recovered by Trudy (man in the 

middle) will be as follows: 

{0,2,19;  1,0,15;  1,3,11; 1,5,18;  2,1,12;  

2,4,14;  3,1,11; 3,2,29; 4,0,11; 4,1,15; 

4,4,16;  5,2,9 }. 

The data member corresponding to 

table-entries at row  no. 3, 7 and  9 are 

same but after enciphering they are 

represented by different bit strings, this 

hides patterns of input  plain text and 

making cryptic mining process hard. 

Since data enciphering is achieved by 

the location parameter (i, j) of device or 

data item, therefore the key would be 

variable and will change automatically 

for moving device. This variable key is 

making same data to become different 

cipher at different locations. Ciphers 

making position based variability in data 

items. LSAVK() is memory efficient 

due to storage of nonzero members only 

,    1  O p O p   and takes  O n  

time for processing, where p is number 

of nonzero items. Tables 1, Table 2 and 

Table 3 demonstrates working of cryptic 

algorithms LSAVK ( ), QSAVK ( ) and 

CSAVK( ) from sender (column-5 : 

Data Sent by Alice (Hex code) 

),Receiver(column-8: Data Received by 

BOB 

(Recovered Text)) and man in middle 

(Column-6: Message bits on Noisy 

Channel). 

  12 

 



 
Table 1: Illustration of LSAVK based Information Transmission 

Index i j M(i,j) 

Data Sent by 

Alice (Hex 

code) 

Message bits on 

Noisy Channel 

Cipher 

on 

channel 

Data Received by 

BOB 

(Recovered Text) 

0 6 6 12 0C 00001110 4E 0C 

1 1 3 19 13 00111010 3A 13 

2 2 1 15 0F 00010001 11 0F 

3 2 4 11 0B 00101110 2E 0B 

4 2 6 18 12 01101110 6E 12 

5 3 2 12 0C 00011011 1B 0C 

6 3 5 14 0E 01001010 49 0E 

7 4 2 11 0B 00011010 1A 0B 

8 4 3 29 1D 01011011 5B 1D 

9 5 1 11 0B 00010000 10 0B 

10 5 2 15 0F 00100011 23 0F 

11 5 5 16 10 01010101 55 10 

12 6 3 09 09 00100001 21 09 

 
Table 2: Illustration of QSAVK based   Information Transmission 

Index I j M(i,j) 
Data Sent by Alice 

(Hex Code) 

Message bits on 

Noisy Channel 

Cipher 

on 

Channel 

Data Received by 

BOB 

(Recovered Hex 

Code) 

0 6 6 12 0C 011100001110 70E 0C 

1 1 3 19 13 000101101010 16A 13 

2 2 1 15 0F 000010011000 098 0F 

3 2 4 11 0B 000110111010 1BA 0B 

4 2 6 18 12 010011101110 4EE 12 

5 3 2 12 0C 000101000111 147 0C 

6 3 5 14 0E 001111001001 3C9 0E 

7 4 2 11 0B 000110100110 1A6 0B 

8 4 3 29 1D 010111101000 5E8 1D 

9 5 1 11 0B 000110011100 19C 0B 

13 
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10 5 2 15 0F 001100000010 302 0F 

11 5 5 16 10 011010010101 695 10 

12 6 3 9 09 001011111010 2FA 09 

 

Table 3: Illustration of CSAVK based Information Transmission 

Index I j M(i,j) 

Data Sent by 

Alice (Hex 

Code) 

Message bits on Noisy 

Channel 

Cipher on 

channel 

Data Received 

by BOB 

(Recovered 

Hex Code) 

0 6 6 12 0C 0101100000001110 580E 0C 

1 1 3 19 13 0000011000101010 062A 13 

2 2 1 15 0F 0000001100111101 022D 0F 

3 2 4 11 0B 0000101100000010 0B02 0B 

4 2 6 18 12 0010100011101110 28EE 12 

5 3 2 12 0C 0000011100100011 0723 0C 

6 3 5 14 0E 0001111111001001 1FC9 0E 

7 4 2 11 0B 0000101011101110 0AEE 0B 

8 4 3 29 1D 0010110011010011 2CC3 1D 

9 5 1 11 0B 0000101011100100 0AE4 0B 

10 5 2 15 0F 0001011100011011 171B 0F 

11 5 5 16 10 0100010100010101 4515 10 

12 6 3 9 09 0001110010011011 1C9B 09 
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Figure 5: Key Size(X-axis) and corresponding time taken in Seconds(Y-axis) by 

LSAVK(),QSAVK(),CSAVK() 

The performance of LSAVK, QSAVK 

and CSAVK are shown in figure 5, that 

shows with increasing the number of 

digits of parameters from 3 digits 

onwards the time taken by these 

algorithms varies fast. In Figure 7 the 

relative performance of the algorithm is 

presented, form both the figures it is 

clear that the performance of CSAVK is 

better. 
 

Discussions and Future Directions 

The encryption algorithms 

LSAVKEncrypt(), QSAVKEncrypt() 

and CSAVKEncrypt() use curves of 

linear, Quadratic and Cubic 

relationships that are parameterized by a 

and b. It is worth to check whether these 

relationships are manifested into 

produced ciphertext. If yes then it is 

better to apply rot-13 type of 

transformation before encryption 

process. The reverse of it can be applied 

at recipient end i.e. by 

LSAVKDecrypt(),QSAVKDecrypt()and 

CSAVKDecrypt(). 

Parameter Size (In Number of Digits) 

v/s. Max. Execution Time  

The effect of increasing key size 

increasing non-linearly when numbers 

of digits are increased from 3.the table  
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Table 4: Key size (In Number of Digits) v/s. Execution Time  

Key size 

(number of 

digits) 

Sparse Matrix 

1 degree 

decryption 

Execution  

Time (sec) 

2 degree 

decryption 

Execution  

Time (sec) 

3 degree 

decryption 

Execution  

Time (sec) 

1 0.0003 0.0002 6.6996 

2 0.0019 0.0019 0.0003 

3 0.0337 0.0418 0.0346 

4 0.7451 1.8633 0.7454 

 

 

The Performance of Proposed 

Algorithms  with Variable File Size. 

In Table 5 demonstration of effect on 

the decryption time (in seconds) taken  

 

for various input size in Bytes. Whereas 

the Table 5 shows the decryption time 

(in seconds) taken for various input size 

in Bytes. 

 

 

Table 5: Comparative Execution Times (In Sec) of Secret Key Algorithm 

Input Size 

(Bytes) 

LSAVK 

(Sec) 

QSAVK 

(Sec) 

CSAVK 

(Sec) 

20527 0.00271 0.00306 0.00394 

36002 0.00493 0.00479 0.00556 

45911 0.0126 0.00602 0.00677 

59862 0.00746 0.00889 0.00834 

69646 0.00853 0.00913 0.00963 

137325 0.02251 0.01904 0.01921 

158959 0.02081 0.02173 0.02217 

166364 0.02965 0.02603 0.02621 

191383 0.03049 0.03154 0.03126 

232398 0.03234 0.03326 0.03330 
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The result of table 5 is shown in figure 7 

and it clears that time required by 

LSAVK (), QSAVK(), CSAVK( ) 

increases with increase in file size. The 

performance of LSAVK is sensitive 

towards file size whereas QSAVK() and 

CSAVK() are in close competition. 

CSAVK() performance is stable over 

LSAVK() and QSAVK().   
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Figure 7: Relative comparison of LSAVK( ),QSAVK( ) and CSAVK( ) 

Conclusion  

This paper presents six cryptic 

algorithms that apply three different 

degrees and performance comparison. 

The relative result comparison of the 

three approaches show better 

performance of CSAVK. The beauty of 

this approach that it does not require key 

exchange and diffused parameters set 

for key construction. The proposed 

technique open new perspectives for 

secure communication using AVK 

approach for low power devices 

together with saving the key 

computation time. 
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