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1.  Introduction 

Topological sorting has been found 

particularly useful in sorting and 

scheduling problems such as PERT 

charts used to determine an ordering 

of tasks, graphics to render objects 

from back to front to obscure hidden 

surfaces, painting when applying 

paints on a surface with various 

parts  and identifying errors in DNA 

fragment assembly  (Knuth, 1973;  

Skiena, 1997;   Rosen, 1999). In this 

paper, we provide systematically an 

outline of most of the techniques 

and principal results pertaining to 

computing and counting topological 

sorts, realizers and dimension of a 

partially ordered set (Poset), and 

identify some new directions. 
 

2. Definitions of some terms and 

related results pertaining to 

partially ordered sets 

We borrow these definitions from 

various sources (Brualdi et al., 

1992; Jung, 1992; Trotter 1991).  

Let  denote a finite  partially 

ordered set along with an implicit 

assumption that  denotes the 
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underlying set and  denotes its 

order relation. Moreover,  stands 

for reflexive partial order and  for 

strict partial order. 
 

For an element , the set  

 is called an 

open upset of . The set  

 is called a 

closed upset of . For any nonempty 

subset , U(A) = {x∈P│a<_P x  

a∈A} = U(a∈A)a∈A U(a) and 

U[A]={x∈P│a≤x, a∈A}=Ua∈AU[a]. 
 

Similarly, the open and closed down 

sets can be defined. Note that the 

closed upset and the closed down set 

are also called filter and ideal 

respectively. 

An element   is said to cover 

an element  if  and 

 with no element   such 

that . Sometimes we 

also say that  is an immediate 

successor of  or  is an immediate 

predecessor of .  For 

every , if  then the 

pair  is said to be a 

comparability of . Two elements 

 are called comparable, 

denoted  or  if either 

 or ; and 

incomparable denoted , if both 

 and . Also, , 

iff  and . 

The incidence of a poset , 

denoted , is defined as the set 

 .  

A pair  is called a 

critical pair if  

 in  implies  in  

and  

 in  implies  in 

 for all . 

Also, the set of all critical pairs is 

denoted  . 

  A subset  of a poset  is 

called a subposet  if the suborder 

  defined on , is the restriction 

of  on pairs of elements of  . In 

other words, a subposet is a subset 

of  with the induced order. 

A chain in  is a subposet of  

which is a linear order. The length 

of a chain  of  is . An 

antichain in  is a subset of  

containing elements that are 

mutually incomparable. 

Two posets  and  are 

Isomorphic, , if there exists 

order preserving bijection  

such that  

. 

 A poset of the type  

 is called an -poset as its  Hasse 

diagram  looks like the letter  :
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Figure 1     
 

A poset  is called N-free if 

there exists no subposet  of   

isomorphic to an -poset.  

 Let  and  be two 

disjoint posets. The disjoint 

(cardinal) sum  is the poset  

 such that  if 

and only if  and  or 

 and . The linear 

(ordinal) sum  is the poset 

 such that   

if and only if  or  

and  with  preceding . In 

other words,  is obtained from 

 by adding  (or  

preceding ) for all  and 

. 

A - antichain is defined as the 

disjoint union of  singletons. 

A poset   is called series-

parallel if it can be constructed from 

singletons by using disjoint union 

and linear sum. 

A crown on  elements 

 is the 

partial order defined: 

For all indices , the elements  

and  are incomparable, the 

elements  and  are 

incomparable, but ; and for 

each , the elements  and  are 

incomparable. 

 A 4-crown ( or a crown with four 

elements) poset is  isomorphic to 2 

 2 (where 2 is a two elements 

antichain) and is a series parallel 

poset.  The N-poset can be described 

as 

 2  2 with one comparability 

missing. For example let  

and  be the two elements 

antichains. It is clear that 

for the poset  (by definition).  

The Hasse diagram follows:

 

 

 

a 

b 

 

d 

c 
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                                                          Figure 2 

 

figure 2  above is an  poset Hasse diagram with the comparability  

 missing.  

Series-parallel posets can also be characterized as N-free posets  

(Valdes et al.,1982) 

A cycle is a poset  with Hasse diagram in figure 3(a) where 

 

 

 

 

  

  

                                                                                                  
 

(a)                                                          (b) 

      Figure 3 (a) Cycle (b) Crown 

 

The young’s lattice , where  are positive integers, is a poset 

defined on  with the 

order relation:  
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 if 

and only if . 

The height of a poset ,  

denoted  ,  is defined to be the 

cardinality of its longest chain. The 

width of , denoted by  ,  

is defined to be the cardinality of its  

largest antichain. It is easy, though 

not trivial, to see that the following 

results hold  

( Dilworth, 1950;  Brualdi et al., 

1992): 

   equals the minimum number 

of chains in a partition of  into 

chains,   equals the minimum 

number of antichains in a partition 

of  into antichains, 

 

and  

 . 

  A Poset  is called  width-critical 

if   and height-

critical   

  if  , for all 

.  

It follows that a poset  is width-

critical if and only if  is an 

antichain and height-critical if and 

only if  is totally ordered.   
 

 

3.  Algorithms for constructing 

linear extensions 

3.1 Definitions of some basic 

terms and related results 

pertaining to ordered sets 

 Let  be a finite nonempty 

poset. A total ordering  is said to 

be compatible with the partial 

ordering   if whenever 

. The scheme for 

constructing a compatible total 

ordering from a partial ordering is 

called topological sorting and the 

outcome is called a topological sort 

(or linear extension). In other 

words, a linear extension of  is a 

linear order which contains . 

 Let  denote a linear extension  of 

 and   denotes  set of all 

linear extensions of .   is 

nonempty for any  (Szpilrajn, 

1930). That is, every order can be 

extended to a linear order. In fact, a 

stronger result has been proved: Let 

 be an order on  and let  

such that . Then there exist two 

linear extensions  and    of 

 such that  and . 

A linear extension  is said to 

reverse the incomparable pair  

when  in . A family  of 

linear extensions of  reverses 

 if for every , 

there exists some  such that 

 in .   

The dual of a linear extension  of a 

poset  denoted , is a linear 

order obtained by reversing the 

order of the linear extension . The 

dual of a poset , denoted , 

is the poset obtained by reversing its 

order. 

A consecutive pair   of 

elements in  is called a jump or 

setup  of  in  if    and 

  are incomparable in . 

We denote the number of jumps of 

 in  by . The jump 

number   of  is the 

minimum of  over all linear 

extensions  of . 

A Poset  is called jump critical if   

 for each .  
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A jump-critical Poset  with 

jump number  has atmost 

 elements ( El-Zahar & 

Schmerl, 1984), and there are 

precisely  jump-critical posets 

with jump number atmost                 

( El-Zahar & Rival, 1985). It is 

recognized that characterizing jump-

critical posets turns out to be a 

considerably complicated problem.   

Pulleyblank proved that jump 

number problem viz. schedule the 

tasks to minimize the number of 

jumps is -hard ( Bouchitte & 

Habib, 1987).  

It follows from Dilworth’s theorem 

that  . If , 

then  is called a Dilworth 

poset or simply a  - poset . It is 

shown that a poset which does not 

have a subposet isomorphic to a 

cycle in figure 2(a) is a  - poset 

(Duffus et al., 1982). 

Syslo (( Bouchitte & Habib, 1987).  

put forward a polynomial algorithm 

to characterize Dilworth posets in 

the case where the antichain of 

maximal elements is a maximal-

sized antichain. It is observed that 

the class of Dilworth posets does not 

seem to be nice with respect to 

computational complexity. 

If  ,  then  is called 

an optimal linear extension of 

. We denote the set of all 

optimal linear extensions of  

by .  
 

 

3.2 Knuth’s (Bucket) sorting 

algorithm 

Essentially, the topological sort of a 

finite  partial order  is  a linear 

order  , , … ,  of elements of 

 such that  whenever  

in   i.e;  precedes  in the partial 

ordering implies   precedes  in the 

linear extension (Knuth, 1973). The 

idea is to pick a minimal element 

and then to remove it from the 

poset, and continue the process with 

the truncated poset until it gets 

exhausted.  A very fast algorithm 

and its implementation for 

computing a topological sort of a 

poset is presented in (Knuth, 1973)  

. As a matter of fact, this  is a well-

documented work on sorting. In its 

simplest form, the algorithm for 

constructing a total ordering in the 

finite poset  can be depicted 

as below:  

Since  is finite and 

nonempty, it has minimal elements. 

Let  be a minimal element i.e.  

is not preceded by any other object 

in the ordering  which is 

chosen first. Again ,  is 

also a poset. If it is non-empty, let 

 be one of its minimal elements, 

which is chosen next and continue 

the process until no element remains 

to be further chosen. Since  is 

finite, this process must terminate 

and give rise to a sequence of 

elements , , …,  along with 

the desired total ordering defined by 

  . The 

compatibility of the total ordering  

with the original partial ordering  

can  easily be verified i.e. by the 

definition given above, 

for all in the 

ordering. It needs to be constantly 

  33 
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observed that  only if  is 

chosen before .  

Alternatively, for a subset  of  , 

we denote the set of minimal 

elements of  restricted to  by 

. The algorithm  for 

computing a linear extension 

  of the poset  

( Kierstead et al., 1987) is defined: 

   

  

    

  

   

  

For any sequence of choices of the 

points , the algorithm  

produces a linear extension of 

; and every linear extension 

of  is obtained from  by 

a suitable sequence of choices of 

.  

Example 1: 

Let   and the 

partial ordering relation be “divides” 

denoted by   .  The scheme to find a 

compatible total ordering for the 

poset  ,     may be  

outlined as follows: 

At first stage, 1 is the only minimal 

element and hence gets selected. 

Next, we need to select a minimal 

element of ,    . At 

this stage, 2 and 3 are the two 

minimal elements, we select 3. 

Next, we need to select a minimal 

element of ,    . 

 At this stage, 2 is the only minimal 

element. Next we need to select any 

minimal element of  ,    . 

Here, 4 is the only minimal element. 

Next, as both 8 and 12 are minimal 

elements of ,    , we select 

12. Finally, 8  is left as the last 

element. The outcome is the total 

ordering   

 A linear 

representation of the above can be 

depicted as follows: 

 Another 

compatible total ordering for the 

same partial ordering may be 

constructed as follows: 

. Hence it 

follows that a compatible total 

ordering for a given partial ordering 

may not be unique. In fact, the size 

of the family of linear extensions of 

a poset  varies from  (if  is a 

chain) to  ( if  is an -element 

antichain). Note, however, that it 

may not be even possible to 

construct such a total ordering if 

loops were present. 

3.3 Depth first traversal algorithm 

 Another algorithm used for the 

computation of a topological sort is 

totally based on depth first traversal 

( Papamanthou, 2004): 

(i) Perform DFS to compute the 

discovery/finishing times  

 for each vertex       

   representing an element in the 

Hasse   diagram of the poset. 

(ii) As each vertex is finished, insert 

it to the front of a linked list 
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 (iii) Return the linked list of 

vertices   

(iv) Output the vertices in reverse 

order of finishing time to get the 

topological sort of the poset (Skiena,  

1997). 

 Example 2: Below is an original 

graph of the 

poset  ,      and 

its Depth first search (DFS) forest.

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

     

                                                    Depth First Search (DFS) forest of poset  

 

Original graph of poset P 

                                                                            Figure 4 
 

 

Final order: .    

 
 

Note that the DFS could generate other distinct topological sorts using the  

same vertex . 
 

 

4. Algorithm for constructing 

greedy linear extensions 

A more restrictive class of linear 

extensions of a poset   is 

obtained by  further restricting  the 

choice of  to generate  

topological sorts called  greedy 

linear extensions. The  algorithm for  

computing  greedy linear extensions 

of a poset  ( Cogis & Habib, 1979;  

Brualdi et al., 1992) is given as 

follows: 

(i) Choose a minimal element  of 

   

(ii) Suppose  have been 

chosen. 

  : If there is at least one minimal 

element of  

1 

2 3 

4 

8 

12 

1 

2 

4 

8 

12 

3 

1/12 

10/11 

2/3 

4/5 

6/7 

8.9 
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    which covers    

then choose  to be any  such 

minimal  

 element; otherwise, choose  to 

be any minimal element of    

. 

More precisely, a linear extension of  

 is greedy if and only if it is 

obtained from the following 

algorithm   by a suitable 

sequence of choices of the points 

               ( Kierstead et al., 

1987): 

  

  

  

  

  

 

   

  

  

 Example 3:  Hasse diagram of the 

poset  ,       and  its    

corresponding linear extensions:

  
 

                                        8          12          12              8         12      8 

               8 

                

 

 

                                                        2 
 

        2 

 

 

 

 

                     Poset P                        Linear extensions of the  poset  ( )   

                      

       Figure 5 
 

 

 

By definition, L2, L6  and L7  are 

greedy linear extensions of the poset 
, but L1 , L3 , L4  and L5  are not 

greedy. 

12 

2 

3 

12 

4 

1

2 

2 3 

8 

4 
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 2 
 4 

3 

8 

1

2 

3 
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            L7 
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8 
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Let  denote the set of all greedy 

linear extensions of the poset . A 

poset  is greedy if 

;  that is, every greedy 

linear extension is optimal.  

Every greedy linear extension is 

optimal for the jump number on the 

class of  series parallel posets 

(Cogis & Habib, 1979 ) . Every -

free poset is greedy (Rival, 1986).  

An optimal linear extension of 

Dilworth poset is necessarily greedy 

(Bouchitte &Habib, 1987). 

 The Young’s Lattice  is 

greedy if and only if one of  (1) 

 or  and (2)  and 

 is satisfied.  Every poset 

, containing no subposet 

isomorphic to figure 2(b) given in 

section 2, satisfies   

(El-Zahar & Rival, 1985). 

 A poset  is reversible if 

 whenever . A 

poset  is reversible if and 

only if  (Rival &  

Zaguia, 1986;  Jung, 1992). 
 

 

5. Algorithm for constructing 

super greedy ( depth-first greedy 

(dfgreedy)) linear extensions. 

A further restrictive class of linear 

extensions of a poset  is the 

class of super greedy ( depth-first 

greedy (dfgreedy)) linear extensions. 

A greedy linear extension of 

 is super greedy if it is 

obtained by applying  the following 

scheme (Bouchitte et al.,1985;  

Ducournau &  Habib, 1987) : 

(i) Choose for   any minimal 

element of  

(ii) If  is super greedy, 

then choose for  any minimal 

element of     

    covering , 

where  is the greatest 

subscript, if there exists one; 

otherwise choose any minimal 

element of . 

Alternatively, a linear extension   

of  is super greedy if and 

only if it is obtained  by applying 

the following algorithm 

 by a suitable 

sequence of choices of the points 

(Kierstead et al., 1987): 

  

  

  

  

  

WHILE M⋂U(a_k )=∅  AND k≠0  DO 

SET k=k-1 
 

,  

   

  

In example 3, L5, L6 and L7 are 

super greedy linear extensions. 

The notion of super greedy linear 

extension was introduced in 

(Pretzel, 1985), and studied some of 

its algorithmic properties studied 

(Bouchitte et al., 1985)  .  Every 

super greedy linear extension is 

 37 
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greedy i.e;  , where 

 denotes the set of all super 

greedy linear extensions of a poset 

 (Bouchitte &  Habib, 1987).  

Computational complexity aspect of 

greedy and super greedy linear 

extension construction associated 

with the jump number has been 

studied (Kierstead, 1986). 

6.  Counting topological sorts, 

Dimension, and Realizers  of a 

poset 

The following are some established 

facts in this regard  (Trotter, 1991;  

Brualdi et al., 1992; Skiena , 1997; 

Schroder, 2003;  Kloch, 2007): 
 

 

6.1 Counting topological sorts 

(i)   Posets with no elements have 

exactly one linear extension, the null 

set. 

(ii)  A Poset that is a chain has just 

one linear extension which is itself. 

(iii)  A Poset that is an antichain of 

 elements has  linear extensions 

(iv)  The number of linear 

extensions of all other Posets with  

elements lies between two bounds 

mentioned in (ii) and (iii). 

(v)   , 

where   denotes the number of 

all linear extensions of a given Poset 

. The   for various linear 

extensions outlined above can be 

computed using the formulae viz; 

       

and  
      

  

where  

 denote the number of linear 

extensions, greedy linear extensions 

and super greedy linear extensions 

of a given Poset  

respectively. The expressions 

 are 

also useful for  enumerating  all the 

linear extensions of each kind.  

Example 4. We enumerate  

 of the poset  given by the 

Hasse diagram below:
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:                                                      d 

 

 

 

 

 

 

 

 

 

Let   denote a shorthand notation for  . We have the 

following: 

  

             

            

          

 

         

 

         

        

 

        . 

           

       Corresponding to the linear extensions  

, 

   

  

, respectively. 

Figure  6 

a x 

b 
y 

c 
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 corresponding to the greedy linear extensions  

, , 

and  

 , respectively. 

  

                         

                        

                         

                          

                              

              =1   corresponding to the  super geedy linear 

extensions 

             

 

and  

            , 

respectively. 
 

6.2 Realizers of a poset 

Szpilrajn [33]  proved that any order 

relation is the intersection of its 

linear extensions. In fact, not very 

infrequently, the intersection of only 

a few linear extensions of a given 

Poset turns out to be sufficient to 

give rise to the original Poset. That 

is, for any poset , there exists a 

finite set of its linear extensions 

which realizes . This leads to the 

following definition: 

If  is a family of linear extensions 

of the poset  whose 

intersection is the order relation , 

 40 
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then  is called a realizer of . If  

 is a realizer of 

the poset , then for any 

, the set 

 is a 

realizer of the subposet .  

 The set of all greedy linear 

extensions of a poset  is a 

realizer called the greedy realizer 

and the family of greedy realizers is 

nonempty (Bouchitte et al., 1985). 

There exists a super greedy realizer 

for every ordered set (Kierstead et 

al.,1987).  

6.3  Dimension of a poset 

The dimension of a poset , 

denoted , is defined as the 

minimum cardinality of a realizer 

for the poset  ( Dushnik & 

Miller, 1941) . In other words, the 

dimension of a poset is the minimal 

number of its linear extensions 

whose intersection is the original 

poset. That is,  is the least 

positive integer  for which there 

exists a family  

of linear extensions of  such that  

 . It follows 

from Dilworth’s theorem that the 

dimension of an order never exceeds 

its width i.e., . 

Also, it follows from the definition, 

that the removal of a point from  

cannot increase its dimension but it 

can decrease by atmost one 

(Hiraguchi, 1951). Thus we have 

 

for all . Tree-shaped posets are 

-dimensional. In general, for a 

poset  with  , its 

upper bound is given by  

. Moreover, if , 

then .   

A Poset  (of dimension  is 

called dimension-critical ( -

irreducible) provided 

. In 

other words,  is -irreducible if it 

has a dimension  and the 

removal of any element lowers its 

dimension. The -irreducible Posets 

have been characterized, but no 

characterization is known for the -

irreducible posets for . 

However, it is known that for each 

, there exist infinitely many 

dimension-critical posets of 

dimension  ( Kelley, 1977; Trotter 

& Moore, 1976). It is shown  that 

the computation of dimension itself 

is an NP-complete problem. In 

particular,  it is polynomial time 

solvable if a partial order has 

dimension atmost , but the case for 

having dimension atmost  is NP-

complete (Yannakakis, 1982) . 

However, whether the jump number 

is NP-complete for the particular 

class of two dimensional posets is 

still an open problem (Bouchitte & 

Habib, 1987). 

The notion of greedy dimension of a 

poset is studied in (Bouchitte et al., 

1985). It is observed that the 

existence of a greedy realizer and 

thus of the greedy dimension 

immediately follows from a result 

obtained in (El-Zahar & Rival, 

1985) that for every incomparable 

pair , there exists a greedy 

linear extension  with . 
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This is proved  by demonstrating 

algorithmically that such a greedy 

linear extension exists for every 

critical pair. Further, in course of 

studying the relationship between 

the greedy dimension and the 

ordinary dimension of a poset,  the 

existence of equality between them 

for a wide range of posets, including 

the N-free posets, two dimensional 

posets and distributive lattices has 

been proved. 

Following the  definition of   

for a poset ,  a family  of 

linear extensions of  is a realizer  

of  if and only if for  every 

, there exists some 

 such that  in , and 

hence the dimension of  is just the 

least integer  for which there exists 

a family  of linear extension of  

which reverses  (Trotter, 

1991). 

Furthermore, if , then 

every minimal realizer of  is 

greedy.  

Since , we note here 

that  

 

holds  

 (Kierstead & Trotter, 1985).  

Besides  a wealth of results related 

to bounds for ordinary and greedy 

dimensions of a poset,  the best 

possible upper bounds for the super 

greedy dimension of a poset   

in terms of    and width 

, where   is a maximal 

antichain has been proved 

(Kierstead et al., 1987). Summarily, 

we have the following: 

Removing one point from a poset 

does not increase any of the 

parameters: width, height, jump 

number and dimension. However, it 

can decrease each of them by atmost 

one.  

If one comparability pair is removed 

from a poset, its result is a poset in 

general. However, if only a 

comparability pair which cannot be 

recovered by transitivity is removed, 

the result is still a poset. Thus, 

removing the comparability  

results in a poset if and only if  

covers .  

Similarly, the addition of one 

comparability pair does not in 

general results in a poset. 

However,if only a comparability 

which does not force other 

comparabilities is  added, the result 

is again a poset. In other words, the 

comparability  can be added 

to   with the result being a poset 

(with exactly one more 

comparability) if and only if  

in  implies , and   in  

implies  . Such a pair  is 

called  an nonforcing ordered pair 

of  ( Rabinovitch & Rival, 1979). 

Despite the emergence of 

consequences that posets exist with 

bounded height but arbitrary large 

dimension (Trotter, 1991), 

numerous significant contributions 

towards characterizing the 

dimension parameter of a poset are 

around (Kelley & Trotter, 1982). 
 

7. Some future directions 

(i) In face of the fact that every 

poset has a greedy optimal linear 

extension, the characterization for 

 42 
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the existence of  non-greedy optimal 

linear extension of a poset need to 

be investigated.   

(ii) The choice of some useful 

characterization (say, stability, etc.) 

of a poset interms of the size of its 

realizers versus the size of the class 

of its all linear extensions could be 

investigated further.  

(iii) Many nice properties of 

realizers are known, but how to 

compute them effectively  needs 

further vindication. 

(iv) A number of optimization 

problems need to be addressed; for 

example, constructing an efficient 

algorithm to compute a linear 

extension  that minimizes the 

number of jumps (Bouchitte & 

Habib, 1987).  

(v) Studies related to various 

concepts described in this paper on a 

finite multiset are yet to be 

conducted ( Anderson, 1987;  Girish 

& Sunil, 2009). 

(vi) Multiset as a model for multi-

attribute objects used in discovering 

intelligent  systems, control of Non-

linear mechanical systems etc. may 

get simplified  by using  topological 

sorting (Petrovsky, 1997). 

(vii) Topological sorting can also be 

used in discovering computing 

simulators for biological systems 

(Krishnamurthy, 2005). 

(viii) Last but not the least, some 

open problems, like   

problem need our    attention  

(Felsner & Trotter, 1993). 
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