
Covenant Journal of Informatics and Communication Technology (CJICT) Vol.3 No.2, December 2015.

A Review of Metrics and Modeling Techniques in

Software Fault Prediction Model Development

Rinkaj Goyal
1
,

Pravin Chandra
2
,

Yogesh Singh
3

1
USICT, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, Delhi-

110078
1
rinkajgoyal@gmail.com

2
USICT, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, Delhi-

110078
2
 chandra.pravin@gmail.com

3
 USICT, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, Delhi-

110078
4

3
ys66@rediffmail.com

Abstract: This paper surveys different software fault predictions progressed through

different data analytic techniques reported in the software engineering literature. This

study split in three broad areas; (a) The description of software metrics suites reported

and validated in the literature. (b) A brief outline of previous research published in the

development of software fault prediction model based on various analytic techniques.

This utilizes the taxonomy of analytic techniques while summarizing published

research. (c) A review of the advantages of using the combination of metrics. Though,

this area is comparatively new and needs more research efforts.

Keywords: Metrics Suite; Object oriented metrics; Software fault prediction; Software

Metrics.

1. Introduction

Development of fault prediction

models in software engineering is a

field more than three decades old;

however is still an emerging aspect

of empirical software engineering

(Catal and Diri, 2007; Kaner and

Bond, 2004; Matsumoto et al., 2010;

Radjenovic et al., 2013). The

resurgence in this field occurs due to

availability of public available data

as repositories in recent decade and

as well as due to the development of

other numerical techniques, which

have been researched in

considerable depth(Dick et al.,

2004).

A fault prediction model uses

statistical methods to assess and

quantify the relationship between

different metrics and fault-

proneness of a software module

even before it is released (Catal and

Diri, 2009; Catal et al., 2011; Hall et

al., 2011; Raj Kiran and Ravi,

2008).

23

Covenant Journal of Informatics and Communication Technology (CJICT) Vol.3 No.2, December 2015.

Different object-oriented metrics

have been proposed in the literature

due to the increased usage of object-

oriented technology in software

development(Aggarwal et al., 2009,

2006; Anh, 2010; Arisholm et al.,

2010; Babic, 2012; Caglayan et al.,

2010; Catal, 2011; Chowdhury and

Zulkernine, 2011).

Predictive models quantitatively

estimate some aspect of system

quality and their efficiency is

determined by fault history data and

applied quality evaluation

procedures(Corazza et al., 2010;

Couto et al., 2012; Hong et al.,

2010; Janes et al., 2006; Jones,

2008; Khoshgoftaar et al., 2006;

Lavazza and Robiolo, 2010; Li and

Henry, 1993; Li et al., 1991; Luo et

al., 2010) Object oriented

development needs a different

strategy towards the development of

metrics. Since, object-oriented

technology utilize objects as its

building blocks and contrasting

from procedural systems, which use

algorithms instead. The derivation

and consequently the selection of

appropriate metrics depend on the

identification of attributes of objects

and peculiarities of object-oriented

software development process.

These metrics not only indicate the

complexity of an object and its

association (interaction) with other

objects, but also measure different

characteristics of a quality model

(Figure .Error! Reference source

not found.).

24

Covenant Journal of Informatics and Communication Technology (CJICT) Vol.3 No.2, December 2015.

Figure 1: ISO/IEC 25010 Software Quality Standard (Adapted from Wagner et al.

(Wagner, 2013)

2 Software Metrics and Suites: A

Survey

Software metrics can be categorized

as product metrics, process metrics

or resource metrics. Product metrics

measure different features of

developed programs like Methods

and Class level metrics in object-

oriented systems. Process metrics

are related to the measurement and

25

Covenant Journal of Informatics and Communication Technology (CJICT) Vol.3 No.2, December 2015.

quantification of activities like

design, implementation, testing, and

maintenance. Resource metrics

focus on all other resources

involved in development such as

programmers, cost of the product

and processes, etc. (Ebert and

Dumke, 2007; Koru and Liu, 2005;

Laird and Brennan, 2006; Lanubile

and Visaggio, 1997).

These metrics have shown a

corresponding relationship with a

variety of external quality

characteristics of software, such as

reliability, testability and

maintainability (Alshayeb and Li,

2003; Li and Henry, 1993; Mair and

Shepperd, 2011).

Carapuça et al. (Carapucca and

Others, 1994) suggested a

classification skeleton that

represents the taxonomy of Object

oriented metrics. This framework is

known as TAPROOT ((Taxonomy

Précis for Object-Oriented Metrics)

portrayed as a tubular arrangement

with two independent vectors (

Figure 2); different aspects of

measurement (design, size,

complexity, reuse, productivity,

quality) and the granularity

(method, class, system) of an object-

oriented system. Though, there are

no obvious boundaries between

different categories and overlapping

may be observed. However, this

framework promotes the necessity

of relevant metrics adequately to

address a particular dimension of

the software module. Figure 3

sketches the OO design measures

apprehending varying dimensions

and architectural quality of a class

identified by Briand et al. (Briand et

al., 1998). These measures associate

to the fault-proneness of a class.

Figure 1: Taxonomy for Object-Oriented Metrics.

26

Covenant Journal of Informatics and Communication Technology (CJICT) Vol.3 No.2, December 2015.

Figure 2: OO Design Measures Related to Fault-Proneness.

A concise summary of the

development of different metrics

(metrics suite) in the chronological

order of their reporting is given

below;
McCabe T. (McCabe, 1976) proposed a

graph-theoretic measure to compute

program’s structural complexity known

as Cyclomatic Complexity (CC). When

a program is modelled as a control flow

graph, CC is defined as follows:

CC=e−n+p (1)

Where n = number of vertices; e =

number of edges and p = connected

components.

Conceptualising coupling as the critical

complexity measure for fault

prediction, Li, W. and Henry Li (Li and

Henry, 1993) suggested two metrics

Message Passing Coupling (MPC) and

Data Abstraction Coupling (DAC),

based on the coupling through message

passing moreover, Abstract data types

(ADT) declared in the class. Two size

metrics i.e. SIZE 1 and SIZE 2 were

also recommended, addressing the

ambiguity in the determination of the

size factor of an object-oriented

program

27

Covenant Journal of Informatics and Communication Technology (CJICT) Vol.3 No.2, December 2015.

(Table 1).
TABLE 1: METRICS PROPOSED BY LI AND HENRY (Li et al., 1991)

Metric Name

Description Category

MPC(Message

Passing

Coupling)

Number of send

statements

defined in a class

Methods

Design

Number of

Methods

(NOM)

Number of local

methods

Method

Complexity

SIZE1 Number of

semicolons in a

class

Attribute size

SIZE2 Number of

attributes +

Number

of local methods

Attribute size

Chidamber, S. R. and Kemerer

(Chidamber and Kemerer, 1994)

proposed an extensively applied and

validated metrics suite, commonly

identified as Chidamber & Kemerer

(CK) metrics suite with six metrics

(Table 2).

Hitz, M. and Montazeri (Hitz and

Montazeri, 1995) discussed flaws in the

determination of coupling constituent in

CK metrics suite. They proposed two

coupling based metrics, Coupling

among objects(CLO) and Coupling

among classes (CLC) by analysing the

coupling between classes and object as

two distinct impressions (Table 3).

TABLE 2: METRICS PROPOSED BY CHIDAMBER & KEMERER (Chidamber and Kemerer, 1994)

CK Metric

Description Category

Coupling Between

Object classes

(CBO)

represents the

dependence

of one class

over other classes

System

Complexity

Depth of the

Inheritance Tree

(DIT)

represents the length

of the longest path

from a given class to

the root class in the

inheritance

tree

Class Design

Lack of Cohesion

Metric

(LCOM)

represents the count

of method pairs in a

class with zero

similarities

Class

Design/Method

Complexity

Response for the

classes (RFC)

represents the sum of

the number of local

Class Design

28

Covenant Journal of Informatics and Communication Technology (CJICT) Vol.3 No.2, December 2015.

methods and remote

methods

Weighted Methods

per Class (WMC)

represents the sum

of the complexity of

methods.

Method

Complexity

Number of

Children (NOC)

represents the count

of the number of

immediate

subclasses of

a class.

Class

Complexity

TABLE 3:METRICS PROPOSED BY HITZ & MONTAZERI

Metric Name

Description Category

CLO(Coupling

among objects)

Represents dynamic

dependencies

between objects

System

complexity

CLC(Coupling

among classes)

Represents static

dependencies

between implementations

System

complexity

Tegarden et al. (Tegarden et al.,

1995) introduced following metrics

through verifying that interaction

and inheritance are the determining

factors in the coupling aspect of a

class. Whereas, features like

association and generalization-

specialization contributes towards

the cohesiveness (Table 4).

Abreu et al. (e Abreu and Melo,

1996) proposed a MOOD (Metrics

for Object Oriented Design) metrics

suite comprising of the metrics

listed in Table 5. These metrics

capture core architectural

ingredients of an object-oriented

program like encapsulation,

inheritance, polymorphism and

message passing. Bansiya et al.

(Bansiya and Davis, 2002) proposed

QMOOD (Quality model for object-

oriented design) metrics suite with

an assessment of total quality index

as super metric. These eleven

metrics are based on the design

quality attributes defined in ISO

9126 and possess an edge of early

computability in the design process

(Table 5).

TABLE 4: METRICS PROPOSED BY TEGARDEN, D. P et. al. (Tegarden et al., 1995)

Metric Name Description Category

CLD(Class-to-leaf

depth)

Count the maximum levels

that are below the class in

the inheritance hierarchy

Class

complexity

NOA(Number of

ancestors)

Count of the parent classes

of the class.

Class

complexity

NOD(Number of

descendants)

Count of the descendent

classes of a class.

Class

reusability

29

Covenant Journal of Informatics and Communication Technology (CJICT) Vol.3 No.2, December 2015.

TABLE 4: METRICS PROPOSED BY ABREU et. al. (Abreu and Melo, 1996)

Metric Name Description Category

Method Hiding

Factor (MHF)

Average (in per cent)

of

the methods visibility.

Class design

Attribute Hiding

Factor (AHF)

Average (in per cent)

of

the attribute visibility.

Class design

Method

Inheritance

Factor (MIF)

Average (in per cent)

of

methods reusability.

Method

reusability

Attribute

Inheritance

Factor (AIF)

Average (in per cent)

of

attributes reusability.

Class

reusability

Coupling

Factor (COF)

Average (in per cent)

of

class coupling.

Class

complexity

Polymorphism

Factor (POF)

Average (in per cent)

of

methods overridden.

Method

complexity

Software measurement research

community is actively involved in

identifying new OO metrics

addressing more quality attributes of

Object-oriented software. Recent

work in this regards includes the

following;

Michura et al. (Michura et al., 2013)

proposed complexity metrics to

determine the difficulty in

implementing changes through the

measurement of a method's

complexity, diversity, and

complexity density (Table 6).

Wang et al.(Wang and Shao, 2003)

proposed Cognitive complexity as a

new measure to determine the

complexity by taking the cognitive

and psychological parameters into

account.

These parameters consider internal

structures of the artifact along with

the processed input-output into

consideration to measure particular

facet of the quality of a software.

Misra et al. (Misra and Adewumi,

2014; Misra, 2011; Misra et al.,

2012)proposed following cognition

driven complexity measures (Table

7).

 30

Covenant Journal of Informatics and Communication Technology (CJICT) Vol.3 No.2, December 2015.

TABLE 6:METRICS PROPOSED BY MICHURA et al. (Michura et al., 2013)

Metric Name Description

Mean Method Complexity

(MMC)

Measures the complexity of a class

method obtained by dividing

method’s cyclomatic complexity

with the number of methods in a

class.

Standard Deviation Method

Complexity (SDMC)

measure the method diversity of a

class by taking the deviation of a

methods complexity from the mean

of methods complexity into

consideration.

Proportion of Nontrivial

Complexity (PNC);

measures the class complexity

density by identifying the proportion

of methods whose complexity is not

one.

TABLE 5: METRICS PROPOSED BY MISRA et al. (Misra et al., 2012)

Metric Name Description

Method Complexity (MC) Measures the complexity of a method

by taking logical structures used in a

method into consideration. This metric

is computed by assigning a weight to

each logical structure involved in the

implementation of a method followed

by summing up the complexity thus

obtained for all methods of a class.

Coupling weight for a class

(CWC)

Measures the coupling effect between

classes by not only considering the

number of messaged passed, but also

taking the complexity of calling and

called functions into consideration.

Attribute Complexity (AC) Measures the complexity induced in

the class due to data members of a

class. This metric is obtained by

summing up the number of attributes.

Weighted Class Complexity

(WCC)

Measures the class complexity as a

whole by summing up the methods and

attributes complexity.

Code Complexity (CC) Measures the complexity introduced

due to inheritance by differentiating

between the influence of sibling and

child-parent relationship in the

determination of the overall impact.

3 Review of Modeling Techniques

In recent years empirical software

engineering has seen an increased

usage of various data analytic

techniques accruing to the public

availability of a multitude of

31

Covenant Journal of Informatics and Communication Technology (CJICT) Vol.3 No.2, December 2015.

software repositories (Harrison et

al., 1998; Mende, 2010; Menzies et

al., 2010; Mertik et al., 2006; Perry

et al., 2000; Rodriguez et al., 2012;

Runeson et al., 2006; Seaman, 1999;

Shepard et al., 2001) and

progressive research shown by

machine learning and data mining

community. Nonparametric

techniques like Regression Tree,

Random Forest, Support Vector

Machine, Neural Network etc. have

been extensively reported

tang(Brady and Menzies, 2010;

Lessmann et al., 2008; Malhotra et

al., 2010; Succi et al., 2003; Tang et

al., 1999; Tichy, 1998). Following is

the review of fault prediction

model’s evolution based on the

grounds of applied data analysis

routines. Fig. 4 outlines the

categorization of the analysis

methods studied in this section

along with their position in the

hierarchy of the broad spectrum of

data science.

Figure 3:Taxonomy of Data Analysis Techniques

 32

Covenant Journal of Informatics and Communication Technology (CJICT) Vol.3 No.2, December 2015.

3.1 Linear and Logistic

Regression

A statistical method for regression

analysis is widely reported

technique to construct fault

prediction models.

In multiple linear regression (MLR)

technique, relationship between two

or more independent variables (x
1
,

x
2

 ...x
k
) with a dependent variable

(y) is determined. The developed

model can be viewed as Data = Fit +

Residual.

To fit the model (i.e. to find

regression coefficients) the ordinary

least square method (OLS) is

performed minimizing the squared

distance between predicted and

actual values, and the value of the

relationship computed by the model

can be predicted from residuals

(Uysal and Guvenir, 1999; Yan and

Su, 2009).

Logistic regression works like linear

regression, except for the fact that

independent variables may be

categorical, and the response is a

dichotomous outcome ranging from

0 to 1(Runkler, 2012).

Alshayeb and Li (Alshayeb and Li,

2003) established the relationship

between OO metrics selected from

Chidamber and Kemerer (CK)

metrics suite (Chidamber and

Kemerer, 1994) and

development/maintenance efforts

like Lines Changed (LC), Lines

Added (LA), and Lines Deleted

(LD) using Multiple Linear

Regression (MLR). Even so, such a

relationship was limited to short-

cycled agile process and was found

ineffective in the long-cycled

framework process..

Basili et al. basili(Basili et al., 1996)

used logistic regression to analyse

the relationship between OO metrics

and fault-proneness of classes

during the early phases of the life-

cycle. They had evaluated each

metric in isolation using the

univariate method, augmented by

multi-variate regression to evaluate

the predictive capability of those

metrics. The outcomes of this study

were validated with the data

gathered from eight medium-sized

software modules developed in

C++.

Briand et al. (Briand et al., 2000)

used logistic regression to the subset

of OO metrics in the development of

fault prediction model, owing to the

fact that many OO metrics capture

similar dimensions of measurement.

The investigations were made with

28 coupling measures, ten cohesion

measures, and 11 inheritance

measures. Their work concluded the

prevalence of coupling and

inheritance measures and cohesion

measures were found ineffectual.

Emam et al. (El Emam et al., 2001)

illustrated the impact of

confounding effect of class size in

validation studies using logistic

regression. Their study considered

CK metrics and a subset of the

Lorenz and Kidd metrics (Lorenz

and Kidd, 1994) for a large C++

telecommunications framework.

Supporting their argument, they

 33

Covenant Journal of Informatics and Communication Technology (CJICT) Vol.3 No.2, December 2015.

suggested an Export Coupling (EC)

metric and statistically established

its strong association with fault-

proneness.

Marcus et al. (Marcus et al., 2008)

employed logistic regression

accompanied by principal

component analysis (PCA) on three

open source software systems in

support of their new measure for

class cohesion: Conceptual

Cohesion of Classes (C3). Their

work concluded the superiority of

the C3 metric over existing

structural metrics.

3.2 SVM and Instance-based

Learning

A Support Vector Machine (SVM)

optimally separates data points into

two categories using a kernel

function. Model thus developed

using an appropriate kernel function

is closely related to the neural

network and generalize well, though

starting with a small training

sample. This engenders SVM a

suitable technique to develop fault

prediction models, where the

information of complexity metrics

in the early phase of SDLC is very

limited.

Elish et al. el(Elish and Elish, 2008)

measured performance of Support

vector machine (SVM) in

classifying faults-prone software

modules employing four publicly

available NASA data sets. These

data sets were derived from

software projects developed in the

different programming languages

(C, C++, and Java). The predictive

accuracy of the models developed

through SVM with 21 static module

level metrics with 10 fold cross

validation was compared against

eight other statistical and machine

learning techniques (LR, KNN,

RBF, MLP, NB, BBN, RF, and

DT)
1
 SVM showed superior

performance of recall measures

whilst also maintaining significant

high values of F-measures.

Xing et al. (Xing et al., 2005)

explored the utilization of SVM and

its extended form (transductive

SVM i.e. TSVM) on a random

sample of 390(40000 lines of code)

routines of a medical imaging

software developed in Pascal,

FORTRAN, assembly, and PL/M. A

total of eleven complexity metrics

was considered for model

development. When compared to

Quadratic discriminant analysis

(QDA) as a classifier blended with

PCA as the feature selection

technique, SVM with RBF as the

kernel trick based classifiers were

reported to result in improved

classification accuracy measures.

Di Martino et al. d(Di Martino et al.,

2011) confirmed the advantages of

using SVM as the linear classifier.

However, they reasoned the

applicability of SVM for non-linear

classification. The parameters of

underlying kernel function ought to

be tuned by using the statistics of

dataset. For example, in case of

RBF as the kernel function,

1
 LR : Logistic regression, KNN: K-nearest neighbour,

RBF: Radial basis function, MLP: Multi-layer

perceptron, BBN: Bayesian belief network, NB: Naive
Bayes, RF: Random forest, DT: Decision tree.

 34

Covenant Journal of Informatics and Communication Technology (CJICT) Vol.3 No.2, December 2015.

parameters like C (penalty factor for

misclassified points) and γ (radius

of the RBF) have an impact on

classification accuracy. They

recommended a genetic algorithm

(GA) based approach to tune these

parameters optimally for the dataset

of Jedit software module available

in the PROMISE data repository.

The conclusion derived make

evident the higher performance of

the SVM models combined with

GA.

3.3 Bayesian and Evidence-based

Statistics

A Bayesian network (BN)

represents an acyclic graph that

embodies the joint probability

distribution of a set of random

variables. It models the casual

influences on the problem and has

not been explored in depth in the

software measurement field,

particularly in the predictive

analytics of fault prediction model

development. Construction of BN

requires the modeling of qualitative

influences in a domain through

graphs and after that assignment of

probabilities to each node in the

representation.

Pai et al. (Pai and Dugan, 2007)

developed BN by taking all

products, process and another

source of information accounting for

fault introduction in software into

consideration. Mining of product

and process metrics data generates

an individual BN structure. These

different BN structures estimate

external quality metrics like Fault

content, Fault Proneness, reliability,

etc. to predict the overall quality of

software. This study summarizes

contradictory, but interesting results.

Significance of WMC, CBO, RFC,

and SLOC metrics, with MLR as the

mechanism to construct BN,

supports the results reported by

Gyimothy et. al. (Gyimothy et al.,

2005) and insignificant metrics

include DIT and NOC metrics.

Fenton et al. (Fenton et al., 2002)

developed a toolkit AgeneRisk

(available at

http://www.agenarisk.com) to

generate a dynamic Bayesian

network that allows the construction

of causal models to any phase of

software Life cycle. The utilization

of toolkit exhibited significantly

improved and validated predictive

accuracy in a trail of 30 different

projects.

Bai et al. (Bai et al., 2005)

developed a Markov Bayesian

Network (MBN) to incorporate

dynamic change in the model

parameters of BN. To develop

MBN, core ingredients shown are;

initial distribution of defects

computed from the data set,

distribution of failure time and

distribution of the number of defects

removed over time. Their results

concluded enhanced performance

compared to traditional

JelinskiMoranda model (JM model)

and GoelOkumoto NHPP model

(GO model).

Dejaeger et al. (Dejaeger et al.,

2012) studied 15 different Bayesian

Network (BN) classifiers using

 35

Covenant Journal of Informatics and Communication Technology (CJICT) Vol.3 No.2, December 2015.

NASA and Eclipse foundation data

set and inferred that a general

Bayesian network can be

outperformed by the naive Bayes

classifier when expanded with

different augmentation operators

like Tree augmenter, Forest

augmenter, and selectively augment

with and without discarding.

3.4 Additive Models and Trees

A classification and regression tree

(CART) is a treelike representation

of a succession of decisions

involved. Each internal node

encapsulates a decision taken to

carry out subsequent

predictions(Death and Fabricius,

2000; Dvzeroski and Drumm,

2003). In a classification tree

(decision tree), labels are associated

with the leaves, whereas, in the

regression tree, the actual numerical

value of the response variable is

assigned to the leaf (Breiman et al.,

1993). Model trees are an extension

of regression trees that unite a linear

model with each of the leaves

instead of merely a numerical value

(Frank et al., 1998; Quinlan, 1992).

The regression tree model for fault

prediction was first reported by

Gokhale and Lyu (Gokhale and Lyu,

1997). Since then a large number of

studies have used these trees-based

regression techniques, relevant

amongst them are following:

Khoshgoftaar et al.

kho(Khoshgoftaar et al., 2002)

illustrated the effectiveness of a

regression tree algorithm to identify

fault-prone modules for 4

consecutive releases of a large

telecommunications system using

24 product and four execution

metrics.

Bibi et al. (Bibi et al., 2008)

performed regression via

classification (RvC) by discretizing

target variables to train the

classification model, and then

reversed the process to change the

output, back into a numerical

prediction.

In this study, they experimented

with different classification

algorithms viz IBk JRip, PART,

J48, and SMO available in Weka

environment (Witten and Frank,

2005) using Pekka data set of a

commercial bank (Maxwell, 2002)

to validate the superiority of RvC

approach.

Guo et al. guo(Guo et al., 2004)

statistically analysed the relative

performance of random forest over

logistic regression and discriminant

analysis using five case studies on a

NASA data set. Random forests are

variations of the decision trees and

in this study, they generate a large

number of such trees with the

training data to establish the

preponderance of random forest

empirically.

Chowdhury et al. (Chowdhury and

Zulkernine, 2011) analysed

techniques like C4.5 Decision Tree,

random forests, and logistic

regression. They used fifty-two

releases of Mozilla Firefox,

developed over a period of four

years to compare predictive

performances. Their study

 36

Covenant Journal of Informatics and Communication Technology (CJICT) Vol.3 No.2, December 2015.

concluded that the majority of the

vulnerability-prone files in Mozilla

Firefox can be identified with these

techniques well within the tolerable

false positive rates.

3.5 Perceptron based Models

Neural networks are universal

approximation category of nonlinear

regression method based on the

action of biological neurons. In

general, the term "Neural Network"

(NN) and "Artificial Neural

Network" (ANN) belongs to a

Multilayer Perceptron Network.

Additional prototypes of neural

network include Probabilistic

Neural Networks (PNN), General

Regression Neural Networks

(GRNN), Ward neural network

(WNN), Radial Basis Function

(RBF), Recurrent Networks and

Hybrid Networks etc (Yuhas and

Ansari, 2012)[Error! Reference

source not found.].

Zheng et al. (Zheng, 2010) took the

severity of type II error into

consideration to develop neural

network-based predictive models.

Type II error deals with the

misclassification of defect-prone

modules, whereas Type I error

relates the misclassification of not-

defect-prone ones. Neural Network

with cost-sensitive Adaboost

(boosting technique) (Runkler,

2012) manifested reduced number

of such type II errors.

Khoshgoftaar et al. (Khoshgoftaar et

al., 1997) first illustrated the

utilisation of neural-network for

EMERALD (Enhanced

measurement for early risk

assessment of latent defects), a joint

project of Nortel and Bell Canada to

improve the reliability of software.

Their results manifested that neural

manages Type II classification error

efficiently compared to discriminant

analyses.

Kanmani et al. (Kanmani et al.,

2007) compared and analysed the

performance of Back Propagation

Neural Network (BPN) and

Probabilistic Neural Network (PNN)

to predict the fault-proneness of the

C++ modules with conventional

logistic regression using the data set

generated from the software

modules developed by the graduate

students. This study empirically

verified the robustness of the

predictive accuracy of PNN using

five quality parameters.

Thwin et al. (Thwin and Quah,

2003) analysed the comparative

performance of ward neural network

(WNN) and General Regression

Neural network (GRNN) to predict

count of defects in a class and the

number of lines change per class. A

WNN is a back propagation network

with three slabs in the hidden layer

having different activation

functions. GRNN is one-pass

learning and memory based network

structure. This study reasoned the

superior predictive ability of GRNN

over compared to WNN.

3.6 Fuzzy Logic based

Approaches

Fuzzy based models change the

subjective knowledge into

mathematically explorable terms

37

7

Covenant Journal of Informatics and Communication Technology (CJICT) Vol.3 No.2, December 2015.

and rules to create systems with a

level of uncertainty.

The use of fuzzy logic in the

modeling of various perspectives of

software development process is

increasingly achieving attention of

researchers. Following is the

concise summary of related

contributions published in the

literature;

So et al. (So et al., 2002)

empirically analyzed the

performance of fuzzy logic to

predict fault-prone modules using

inspection data. They built up an

automated and scalable system that

performs well, even if huge

inspection data is not usable.

Pandey et al. (Pandey and Goyal,

2009) explored the effectiveness of

fuzzy expert system in the

prediction of the occurrence of

faults after each phase of the

software development life cycle

(SDLC). Fuzzy inference system of

their model employs eight reliability

metrics collected for different

phases of SDLC.

Xu et al. (Xu et al., 2008)

demonstrated the inference ability of

fuzzy expert system with limited

facts available. Their study resulted

in the maturation of a risk

assessment framework following

NASA standards.

Yang et al. (Yang et al., 2007)

proposed a hybrid model of Neural

and Fuzzy logic. This plan uses the

knowledge derived from previous

similar projects for training and

efficiently deals with the data that is

objective in nature.

Muzaffar et al. (Muzaffar and

Ahmed, 2010) analysed the impact

of de-fuzzification and membership

functions in the conception of a

fuzzy logic based system for

software development effort.

Verma et al. (Verma and Sharma,

2010) proposed a fuzzy logic-based

framework for development effort

evaluation and reported increased

performance on an artificial and live

project data both. Their conclusions

statistically establish the efficacy of

fuzzy logic based system to manage

the imprecision in the input data.

Aljahdali et al. (Aljahdali and Sheta,

2011) reported encouraging

outcomes using fuzzy nonlinear

regression in modelling

accumulated faults in software

modules.

3.7 Bio-inspired Techniques

Evolutionary techniques are bio-

inspired meta-heuristic approaches

and exhibit common characteristics

(Back et al., 1997).

1. Execution of these techniques

begins with a population of the

candidate solution set constituting

the search space.

2. A selection process identifies

better solution through a derived

fitness criteria depending upon the

problem formulation.

3. New solutions evolve through

mutation and recombination.

Azar et al. (Azar and Vybihal, 2011)

optimized existing software quality

estimation models using ant colony

optimization (ACO) technique.

ACO adapted with previously

developed predictive models put to

 38

Covenant Journal of Informatics and Communication Technology (CJICT) Vol.3 No.2, December 2015.

use a common domain and context-

specific data for model construction.

This permits to infer predictive

models built for one dataset for new

data. The result of this study

concluded with the enhanced

performance of ACO compared to

C4.5 and random guessing

techniques.

Khoshgoftaar et al. (Khoshgoftaar

and Seliya, 2003) investigated the

influence of genetic programming

(GP) in developing decision trees to

solve software quality classification

problem whilst minimizing the cost

of misclassification and the size of

tree simultaneously. Two initial

releases of large windows based

embedded systems comprising of

more than 27 million lines of codes

generated dataset used in this study.

The results concluded that GP based

decision tree modelling accounts for

greater flexibility in building

optimal classification models.

Vandecruys et al. Vandecruys

(Vandecruys et al., 2008)

empirically verified the advantage

of AntMiner+ classification process

over C4.5, logistic regression and

support vector machines using

NASA data repository to predict

faults in the software module.

AntMiner+ is a classification

method based on ACO and deduces

a rule-based classification models

from a dataset. The Implementation

of AntMiner+ is accessible on the

web (Refer

http://www.antminerplus.com).

Bouktif et al. (Bouktif et al., 2010)

trained predictive model parameters

from already built models. In the

proposed mechanism, new models

develop through the genetic

algorithm based combination and

adaptation of the expertise already

available in existing prediction

models. The application of this

mechanism with decision trees over

NASA data achieved significantly

improved selection of models.

Chiu et al. (Chiu, 2011) in one way

extends the previous work of

Bouktif et. al. [Error! Reference

source not found.] and suggested

an integrated decision network

(IDN) wherein particle swarm

optimisation (PSO) implements the

combination and adaptation phases

of the model development. In

comparison to GA, PSO approach

needs fewer complex operators,

hence makes it more appropriate to

design IDN. The derived results

establish that the proposed

mechanism outperforms individual

software quality classification

models and provides a deeper

insight to decision makers.

Nature inspired computational

techniques like the Artificial

Immune system have been used in

fault prediction and performance

and are reportedly better than J48

classifiers (Catal and Diri, 2007).

Search-based software engineering

(SBSE), which utilizes nature-

inspired techniques in empirical

software engineering is an emerging

field.

SBSE is gaining momentum with

the advent of enhanced heuristic

algorithms (Gay, 2010; Harman,

39

http://www.antminerplus.com/

Covenant Journal of Informatics and Communication Technology (CJICT) Vol.3 No.2, December 2015.

2010; Harman et al., 2012, 2009;

Meziane and Vadera, 2010).

Studies indicated below points to

the investigations, which take

advantage of the combination of

some of the techniques above and

address other relevant aspects of

software measurement:

Bibi et al. (Bibi et al., 2008) used a

combination of classification and

regression techniques by executing

regression, via classification.

Gyimothy et al. (Gyimothy et al.,

2005) validated metrics for fault-

proneness predictions in the

"Bugzilla" database using a

combination of regression and

machine learning methods.

Nagappan et al. (Nagappan et al.,

2006) provided an excellent step by

step guide to develop quality

predictors.

Beecham et al. (Beecham et al.,

2008, 2006) and Kitchenham et.al.

(Kitchenham et al., 2009, 2002)

provide with notable systematic

literature reviews (SLR) in

empirical software engineering,

along with an unfolded mechanism

to administer a new, although other

suitable literature reviews are also

accessible (Biolchini et al., 2005;

Petersen et al., 2008).

Menzies and Shepperd (Menzies

and Shepperd, 2012) express their

opinions about the sample size,

applied statistical techniques and the

conclusion stability of the published

results in the editorial of the

"Special issue on repeatable results

in software engineering prediction".

This premium editorial give

emphasis on the reproducibility of

the published results and infers the

studies made by Dybaa et al.

(Dybaa et al., 2006) and

Easterbrook et al. (Easterbrook et

al., 2008). Further, Singer et al.

(Singer and Vinson, 2002)

recognizes ethical and legal issues

implicated in empirical software

engineering.

4. Fault Prediction Using Metrics

Combination

The Software Development Life

Cycle transforms artifacts like a

software requirement specification

(SRS) to a final product. The nature

of the relationship between artifacts

and suitable transformation leads to

a large number of the resultant

artifacts (Raffo et al., 2000).

Combination of metrics, selected

from different phases of the

software development lifecycle,

results in improved accuracy of

predictive models.

However, while combining several

metrics; the issue of multi–

collinearity arises due to inter-

correlation among the metrics. To

overcome this, various feature

selection techniques like Principal

Components Analysis (PCA) may

be used. With PCA, a smaller

number of uncorrelated linear

combinations of metrics can be

obtained na(Nagappan et al., 2006).

Following are the notable works in

this field, although somewhat

limited in number:

1. Wahyudin et al. (Wahyudin et

al., 2008) examined the

 40

Covenant Journal of Informatics and Communication Technology (CJICT) Vol.3 No.2, December 2015.

combined effects of product

and project metrics in the

development of an improved

predictive model. Their study

used project metrics collected

from Apache MyFaces project

family over a span of two

years. Through, correlation

analysis, selected project

metrics revealed a strong

correlation between product

metrics. To reduce the

dimensionality of the

combination of metrics,

stepwise regression was

applied. Their work shows the

importance of the

combination of metrics,

without deliberating

interaction between metrics.

2. D’Ambros et al. (DAmbros et

al., 2012) Ambros statistically

analyzed the benefits of

utilizing a combination of

source code metrics and other

metrics derived using

information theory to predict

bugs. The same authors

earlier showed the

comparative advantages of

using the combination of CK

and other object-oriented

metrics (DAmbros et al.,

2010). They created a bug

prediction data set and made

it public. The same data set is

being used in our research.

3. Lee et al. (Lee et al., 2011)

proposed 56 micro interaction

metrics (MIMs) capturing

developer’s behavioral pattern

stored in Mylyn data. Metrics

associated with behavioral

pattern measures developer

interaction with the

development environment, for

example, file editing, time

spent on an event, etc. they

build both classification and

regression models using MIM

in isolation and as well as in

combination with other

traditional metrics and

empirically analyzed their

effect on software quality.

This experimental data of

their study is freely available

for future research purposes.

This combined metrics approach of

fault prediction may utilize different

metrics selected from within a

single project or across multiple

projects. Most metrics developed for

process, products and people relate

to one another; therefore their

combination will lead to the issue of

appropriate selection of candidate

metrics and take their interaction

effect into account.

5. Conclusion

This paper delineates metrics,

metrics suite and their usage to the

applied data analytic techniques.

Although developments of models

make use of different kinds of

metrics, the review of the literature

presented here essentially focuses

on the Object oriented metrics. In

comparison to, procedural language

based system, Object Oriented (OO)

technology based systems introduce

new abstractions and building

blocks. Therefore, development of

41

Covenant Journal of Informatics and Communication Technology (CJICT) Vol.3 No.2, December 2015.

the new set of metrics and fault

prediction models will foster quality

in the developed software. The

advantages of combining metrics,

while implementing a metrics

program in an organisation needs

further investigation.

References

Aggarwal, K.K., Singh, Y., Kaur,

A., Malhotra, R., 2006.

Empirical Study of Object-

Oriented Metrics. Journal of

Object Technology 5, 149–173.

Aggarwal, K.K., Singh, Y., Kaur,

A., Malhotra, R., 2009.

Empirical analysis for

investigating the effect of

object-oriented metrics on fault

proneness: a replicated case

study. Software Process:

Improvement and Practice 14,

39–62.

Aljahdali, S., Sheta, A.F., 2011.

Predicting the Reliability of

Software Systems Using Fuzzy

Logic, in: Information

Technology: New Generations

(ITNG), 2011 Eighth

International Conference on. pp.

36–40.

Alshayeb, M., Li, W., 2003. An

empirical validation of object-

oriented metrics in two different

iterative software processes.

Software Engineering, IEEE

Transactions on 29, 1043–1049.

Anh, N.D., 2010. The impact of

design complexity on software

cost and quality.

Arisholm, E., Briand, L.C.,

Johannessen, E.B., 2010. A

systematic and comprehensive

investigation of methods to build

and evaluate fault prediction

models. Journal of Systems and

Software 83, 2–17.

Azar, D., Vybihal, J., 2011. An ant

colony optimization algorithm to

improve software quality

prediction models: Case of class

stability. Information and

Software Technology 53, 388–

393.

Babic, D., 2012. Adaptive Software

Fault Prediction Approach

Using Object-Oriented Metrics.

Back, T., Fogel, D.B., Michalewicz,

Z., 1997. Handbook of

evolutionary computation. IOP

Publishing Ltd.

Bai, C.G., Hu, Q.P., Xie, M., Ng,

S.H., 2005. Software failure

prediction based on a Markov

Bayesian network model.

Journal of Systems and Software

74, 275–282.

Bansiya, J., Davis, C.G., 2002. A

hierarchical model for object-

oriented design quality

assessment. Software

Engineering, IEEE Transactions

on 28, 4–17.

Basili, V.R., Briand, L.C., Melo,

W.L., 1996. A validation of

object-oriented design metrics as

quality indicators. Software

Engineering, IEEE Transactions

on 22, 751–761.

Beecham, S., Baddoo, N., Hall, T.,

Robinson, H., Sharp, H., 2006.

Protocol for a systematic

42

Covenant Journal of Informatics and Communication Technology (CJICT) Vol.3 No.2, December 2015.

literature review of motivation

in software engineering.

Beecham, S., Baddoo, N., Hall, T.,

Robinson, H., Sharp, H., 2008.

Motivation in Software

Engineering: A systematic

literature review. Information

and Software Technology 50,

860–878.

Bibi, S., Tsoumakas, G., Stamelos,

I., Vlahavas, I., 2008.

Regression via Classification

applied on software defect

estimation. Expert Systems with

Applications 34, 2091–2101.

Biolchini, J., Mian, P.G., Natali,

A.C.C., Travassos, G.H., 2005.

Systematic review in software

engineering. System

Engineering and Computer

Science Department

COPPE/UFRJ, Technical Report

ES 679.

Bouktif, S., Ahmed, F., Khalil, I.,

Antoniol, G., 2010. A novel

composite model approach to

improve software quality

prediction. Information and

Software Technology 52, 1298–

1311.

Brady, A., Menzies, T., 2010. Case-

based reasoning vs parametric

models for software quality

optimization, in: Proceedings of

the 6th International Conference

on Predictive Models in

Software Engineering. p. 3.

Breiman, L., Friedman, J.H.,

Olshen, R.A., Stone, C.J., 1993.

Classification and Regression

Trees, Wadsworth International

Group, Belmont, CA, 1984.

There is no corresponding

record for this reference 1–359.

Briand, L.C., Daly, J., Porter, V.,

Wust, J., 1998. A

comprehensive empirical

validation of design measures

for object-oriented systems, in:

Software Metrics Symposium,

1998. Metrics 1998.

Proceedings. Fifth International.

pp. 246–257.

Briand, L.C., Wust, J., Daly, J.W.,

Porter, V., 2000. Exploring the

relationships between design

measures and software quality in

object-oriented systems. Journal

of Systems and Software 51,

245–273.

Caglayan, B., Tosun, A.,

Miranskyy, A., Bener, A.,

Ruffolo, N., 2010. Usage of

multiple prediction models

based on defect categories, in:

Proceedings of the 6th

International Conference on

Predictive Models in Software

Engineering. p. 8.

Carapucca, R., Others, 1994.

Candidate metrics for object-

oriented software within a

taxonomy framework. Journal of

Systems and Software 26, 87–

96.

Catal, C., 2011. Software fault

prediction: A literature review

and current trends. Expert

Systems with Applications 38,

4626–4636.

Catal, C., Diri, B., 2007. Software

fault prediction with object-

oriented metrics based artificial

immune recognition system.

43

Covenant Journal of Informatics and Communication Technology (CJICT) Vol.3 No.2, December 2015.

Product-Focused Software

Process Improvement 300–314.

Catal, C., Diri, B., 2009. A

systematic review of software

fault prediction studies. Expert

Systems with Applications 36,

7346–7354.

Catal, C., Sevim, U., Diri, B., 2011.

Practical development of an

Eclipse-based software fault

prediction tool using Naive

Bayes algorithm. Expert

Systems with Applications 38,

2347–2353.

Chidamber, S.R., Kemerer, C.F.,

1994. A metrics suite for object

oriented design. Software

Engineering, IEEE Transactions

on 20, 476–493.

Chiu, N., 2011. Combining

techniques for software quality

classification: An integrated

decision network approach.

Expert Systems with

Applications 38, 4618–4625.

Chowdhury, I., Zulkernine, M.,

2011. Using complexity,

coupling, and cohesion metrics

as early indicators of

vulnerabilities. Journal of

Systems Architecture 57, 294–

313.

Corazza, A., Di Martino, S.,

Ferrucci, F., Gravino, C., Sarro,

F., Mendes, E., 2010. How

effective is tabu search to

configure support vector

regression for effort estimation?,

in: Proceedings of the 6th

International Conference on

Predictive Models in Software

Engineering. p. 4.

Couto, C., Montandon, J.E., Silva,

C., Valente, M.T., 2012. Static

correspondence and correlation

between field defects and

warnings reported by a bug

finding tool. Software Quality

Journal 1–17.

DAmbros, M., Lanza, M., Robbes,

R., 2010. An extensive

comparison of bug prediction

approaches, in: Mining Software

Repositories (MSR), 2010 7th

IEEE Working Conference on.

pp. 31–41.

DAmbros, M., Lanza, M., Robbes,

R., 2012. Evaluating defect

prediction approaches: a

benchmark and an extensive

comparison. Empirical Software

Engineering 17, 531–577.

Death, G., Fabricius, K.E., 2000.

Classification and regression

trees: a powerful yet simple

technique for ecological data

analysis. Ecology 81, 3178–

3192.

Dejaeger, K., Verbraken, T.,

Baesens, B., 2012. Towards

comprehensible software fault

prediction models using

Bayesian network classifiers.

Software Engineering, IEEE

Transactions on.

Di Martino, S., Ferrucci, F.,

Gravino, C., Sarro, F., 2011. A

genetic algorithm to configure

support vector machines for

predicting fault-prone

components, in: Product-

Focused Software Process

Improvement. Springer, pp.

247–261.

 44

Covenant Journal of Informatics and Communication Technology (CJICT) Vol.3 No.2, December 2015.

Dick, S., Meeks, A., Last, M.,

Bunke, H., Kandel, A., 2004.

Data mining in software metrics

databases. Fuzzy Sets and

Systems 145, 81–110.

Dvzeroski, S., Drumm, D., 2003.

Using regression trees to

identify the habitat preference of

the sea cucumber (< i>

Holothuria leucospilota</i>) on

Rarotonga, Cook Islands.

Ecological Modelling 170, 219–

226.

Dybaa, T., Kampenes, V.B., Sjo

berg, D.I.K., 2006. A systematic

review of statistical power in

software engineering

experiments. Information and

Software Technology 48, 745–

755.

E Abreu, F., Melo, W., 1996.

Evaluating the impact of object-

oriented design on software

quality, in: Software Metrics

Symposium, 1996., Proceedings

of the 3rd International. pp. 90–

99.

Easterbrook, S., Singer, J., Storey,

M.-A., Damian, D., 2008.

Selecting empirical methods for

software engineering research,

in: Guide to Advanced

Empirical Software Engineering.

Springer, pp. 285–311.

Ebert, C., Dumke, R., 2007.

Measurement Foundations.

Software Measurement:

Establish Extract Evaluate and

Execute 41–72.

El Emam, K., Benlarbi, S., Goel, N.,

Rai, S.N., 2001. The

confounding effect of class size

on the validity of object-oriented

metrics. Software Engineering,

IEEE Transactions on 27, 630–

650.

Elish, K.O., Elish, M.O., 2008.

Predicting defect-prone software

modules using support vector

machines. Journal of Systems

and Software 81, 649–660.

Fenton, N., Krause, P., Neil, M.,

2002. Software measurement:

Uncertainty and causal

modeling. Software, IEEE 19,

116–122.

Frank, E., Wang, Y., Inglis, S.,

Holmes, G., Witten, I.H., 1998.

Using model trees for

classification. Machine Learning

32, 63–76.

Gay, G., 2010. A baseline method

for search-based software

engineering, in: Proceedings of

the 6th International Conference

on Predictive Models in

Software Engineering. p. 2.

Gokhale, S.S., Lyu, M.R., 1997.

Regression tree modeling for the

prediction of software quality,

in: Proceedings of the Third

ISSAT International Conference

on Reliability and Quality in

Design. pp. 31–36.

Guo, L., Ma, Y., Cukic, B., Singh,

H., 2004. Robust prediction of

fault-proneness by random

forests, in: Software Reliability

Engineering, 2004. ISSRE 2004.

15th International Symposium

on. pp. 417–428.

Gyimothy, T., Ferenc, R., Siket, I.,

2005. Empirical validation of

object-oriented metrics on open

 45

Covenant Journal of Informatics and Communication Technology (CJICT) Vol.3 No.2, December 2015.

source software for fault

prediction. Software

Engineering, IEEE Transactions

on 31, 897–910.

Hall, T., Beecham, S., Bowes, D.,

Gray, D., Counsell, S., 2011. A

systematic review of fault

prediction performance in

software engineering. Software

Engineering, IEEE Transactions

on.

Harman, M., 2010. The relationship

between search based software

engineering and predictive

modeling, in: Proceedings of the

6th International Conference on

Predictive Models in Software

Engineering. p. 1.

Harman, M., Mansouri, S.A.,

Zhang, Y., 2009. Search based

software engineering: A

comprehensive analysis and

review of trends techniques and

applications. Department of

Computer Science, King’s

College London, Tech. Rep. TR-

09-03.

Harman, M., McMinn, P., de Souza,

J.T., Yoo, S., 2012. Search

based software engineering:

Techniques, taxonomy, tutorial,

in: Empirical Software

Engineering and Verification.

Springer, pp. 1–59.

Harrison, R., Counsell, S.J., Nithi,

R.V., 1998. An evaluation of the

MOOD set of object-oriented

software metrics. Software

Engineering, IEEE Transactions

on 24, 491–496.

Hitz, M., Montazeri, B., 1995.

Measuring coupling and

cohesion in object-oriented

systems, in: Proceedings of the

International Symposium on

Applied Corporate Computing.

pp. 75–76.

Hong, Y., Kim, W., Joo, J., 2010.

Prediction of defect distribution

based on project characteristics

for proactive project

management, in: Proceedings of

the 6th International Conference

on Predictive Models in

Software Engineering. p. 15.

Janes, A., Scotto, M., Pedrycz, W.,

Russo, B., Stefanovic, M.,

Succi, G., 2006. Identification of

defect-prone classes in

telecommunication software

systems using design metrics.

Information Sciences 176,

3711–3734.

Jones, T.C., 2008. Applied Software

Measurement: Global Analysis

of Productivity and Quality, 3E.

Kaner, C., Bond, W.P., 2004.

Software engineering metrics:

What do they measure and how

do we know? methodology 8, 6.

Kanmani, S., Uthariaraj, V.R.,

Sankaranarayanan, V.,

Thambidurai, P., 2007. Object-

oriented software fault

prediction using neural

networks. Information and

Software Technology 49, 483–

492.

Khoshgoftaar, T.M., Allen, E.B.,

Deng, J., 2002. Using regression

trees to classify fault-prone

software modules. Reliability,

IEEE Transactions on 51, 455–

462.

 46

Covenant Journal of Informatics and Communication Technology (CJICT) Vol.3 No.2, December 2015.

Khoshgoftaar, T.M., Allen, E.B.,

Hudepohl, J.P., Aud, S.J., 1997.

Application of neural networks

to software quality modeling of

a very large telecommunications

system. Neural Networks, IEEE

Transactions on 8, 902–909.

Khoshgoftaar, T.M., Seliya, N.,

2003. Fault prediction modeling

for software quality estimation:

Comparing commonly used

techniques. Empirical Software

Engineering 8, 255–283.

Khoshgoftaar, T.M., Seliya, N.,

Sundaresh, N., 2006. An

empirical study of predicting

software faults with case-based

reasoning. Software Quality

Journal 14, 85–111.

Kitchenham, B., Brereton, P.,

Budgen, D., Turner, M., Bailey,

J., Linkman, S., 2009.

Systematic literature reviews in

software engineering-a

systematic literature review.

Information and software

technology 51, 7–15.

Kitchenham, B.A., Pfleeger, S.L.,

Pickard, L.M., Jones, P.W.,

Hoaglin, D.C., El Emam, K.,

Rosenberg, J., 2002. Preliminary

guidelines for empirical research

in software engineering.

Software Engineering, IEEE

Transactions on 28, 721–734.

Koru, A.G., Liu, H., 2005. Building

effective defect-prediction

models in practice. Software,

IEEE 22, 23–29.

Laird, L.M., Brennan, M.C., 2006.

Software measurement and

estimation: a practical approach.

John Wiley and Sons.

Lanubile, F., Visaggio, G., 1997.

Evaluating predictive quality

models derived from software

measures: lessons learned.

Journal of Systems and Software

38, 225–234.

Lavazza, L., Robiolo, G., 2010. The

role of the measure of functional

complexity in effort estimation,

in: Proceedings of the 6th

International Conference on

Predictive Models in Software

Engineering. p. 6.

Lee, T., Nam, J., Han, D., Kim, S.,

In, H.P., 2011. Micro interaction

metrics for defect prediction., in:

SIGSOFT FSE. pp. 311–321.

Lessmann, S., Baesens, B., Mues,

C., Pietsch, S., 2008.

Benchmarking classification

models for software defect

prediction: A proposed

framework and novel findings.

Software Engineering, IEEE

Transactions on 34, 485–496.

Li, W., Henry, S., 1993. Object-

oriented metrics that predict

maintainability. Journal of

systems and software 23, 111–

122.

Li, W., Henry, S., Selig, C., 1991.

Measuring Ada Design to

Predict Maintainability, in: 9th

Annual National Conference on

Ada Technology. pp. 107–113.

Lorenz, M., Kidd, J., 1994. Object-

oriented software metrics: a

practical guide. Prentice-Hall,

Inc.

 47

Covenant Journal of Informatics and Communication Technology (CJICT) Vol.3 No.2, December 2015.

Luo, Y., Ben, K., Mi, L., 2010.

Software metrics reduction for

fault-proneness prediction of

software modules, in: Network

and Parallel Computing.

Springer, pp. 432–441.

Mair, C., Shepperd, M., 2011.

Human judgement and software

metrics: vision for the future, in:

Proceedings of the 2nd

International Workshop on

Emerging Trends in Software

Metrics. pp. 81–84.

Malhotra, R., Kaur, A., Singh, Y.,

2010. Empirical validation of

object-oriented metrics for

predicting fault proneness at

different severity levels using

support vector machines.

International Journal of System

Assurance Engineering and

Management 1, 269–281.

Marcus, A., Poshyvanyk, D.,

Ferenc, R., 2008. Using the

conceptual cohesion of classes

for fault prediction in object-

oriented systems. Software

Engineering, IEEE Transactions

on 34, 287–300.

Matsumoto, S., Kamei, Y., Monden,

A., Matsumoto, K., Nakamura,

M., 2010. An analysis of

developer metrics for fault

prediction, in: Proceedings of

the 6th International Conference

on Predictive Models in

Software Engineering. p. 18.

Maxwell, K., 2002. Applied

statistics for software managers.

Prentice Hall.

McCabe, T.J., 1976. A complexity

measure. Software Engineering,

IEEE Transactions on 1, 308–

320.

Mende, T., 2010. Replication of

defect prediction studies:

problems, pitfalls and

recommendations, in:

Proceedings of the 6th

International Conference on

Predictive Models in Software

Engineering. p. 5.

Menzies, T., Milton, Z., Turhan, B.,

Cukic, B., Jiang, Y., Bener, A.,

2010. Defect prediction from

static code features: current

results, limitations, new

approaches. Automated

Software Engineering 17, 375–

407.

Menzies, T., Shepperd, M., 2012.

Special issue on repeatable

results in software engineering

prediction. Empirical Software

Engineering 17, 1–17.

Mertik, M., Lenic, M., Stiglic, G.,

Kokol, P., 2006. Estimating

software quality with advanced

data mining techniques, in:

Software Engineering Advances,

International Conference on. p.

19.

Meziane, F., Vadera, S., 2010.

Artificial intelligence

applications for improved

software engineering

development: new prospects.

Information Science Reference.

Michura, J., Capretz, M.A.M.,

Wang, S., 2013. Extension of

Object-Oriented Metrics Suite

for Software Maintenance. ISRN

Software Engineering 2013.

 48

Covenant Journal of Informatics and Communication Technology (CJICT) Vol.3 No.2, December 2015.

Misra, S., 2011. Evaluation Criteria

for Object-oriented Metrics.

Acta Polytechnica Hungarica 8,

110–136.

Misra, S., Adewumi, A., 2014.

Object-Oriented Cognitive

Complexity Measures: An

Analysis. Handbook of Research

on Innovations in Systems and

Software Engineering 150.

Misra, S., Koyuncu, M., Crasso, M.,

Mateos, C., Zunino, A., 2012. A

suite of cognitive complexity

metrics, in: Computational

Science and Its Applications-

ICCSA 2012. Springer, pp. 234–

247.

Muzaffar, Z., Ahmed, M.A., 2010.

Software development effort

prediction: A study on the

factors impacting the accuracy

of fuzzy logic systems.

Information and Software

Technology 52, 92–109.

Nagappan, N., Ball, T., Zeller, A.,

2006. Mining metrics to predict

component failures, in:

Proceedings of the 28th

International Conference on

Software Engineering. pp. 452–

461.

Pai, G.J., Dugan, J.B., 2007.

Empirical analysis of software

fault content and fault proneness

using Bayesian methods.

Software Engineering, IEEE

Transactions on 33, 675–686.

Pandey, A.K., Goyal, N.K., 2009. A

Fuzzy Model for Early Software

Fault Prediction Using Process

Maturity and Software Metrics.

International Journal of

Electronics Engineering 1, 239–

245.

Perry, D.E., Porter, A.A., Votta,

L.G., 2000. Empirical studies of

software engineering: a

roadmap, in: Proceedings of the

Conference on The Future of

Software Engineering. pp. 345–

355.

Petersen, K., Feldt, R., Mujtaba, S.,

Mattsson, M., 2008. Systematic

mapping studies in software

engineering, in: 12th

International Conference on

Evaluation and Assessment in

Software Engineering. p. 1.

Quinlan, J.R., 1992. Learning with

continuous classes, in:

Proceedings of the 5th

Australian Joint Conference on

Artificial Intelligence. pp. 343–

348.

Radjenovic, D., Herico, M., Torkar,

R., Zivkovic, A., 2013. Software

fault prediction metrics: A

systematic literature review.

Information and Software

Technology 55, 1397–1418.

Raffo, D., Harrison, W., Vandeville,

J., 2000. Coordinating models

and metrics to manage software

projects. Software Process:

Improvement and Practice 5,

159–168.

Raj Kiran, N., Ravi, V., 2008.

Software reliability prediction

by soft computing techniques.

Journal of Systems and Software

81, 576–583.

Rodriguez, D., Herraiz, I., Harrison,

R., 2012. On software

engineering repositories and

 49

Covenant Journal of Informatics and Communication Technology (CJICT) Vol.3 No.2, December 2015.

their open problems, in:

Realizing Artificial Intelligence

Synergies in Software

Engineering (RAISE), 2012

First International Workshop on.

pp. 52–56.

Runeson, P., Andersson, C., Thelin,

T., Andrews, A., Berling, T.,

2006. What do we know about

defect detection

methods?[software testing].

Software, IEEE 23, 82–90.

Runkler, T.A., 2012. Data

Analytics: Models and

Algorithms for Intelligent Data

Analysis. Vieweg Teubner

Verlag.

Seaman, C.B., 1999. Qualitative

methods in empirical studies of

software engineering. Software

Engineering, IEEE Transactions

on 25, 557–572.

Shepard, T., Lamb, M., Kelly, D.,

2001. More testing should be

taught. Communications of the

ACM 44, 103–108.

Singer, J., Vinson, N., 2002. Ethical

issues in empirical studies of

software engineering.

So, S.S., Cha, S.D., Kwon, Y.R.,

2002. Empirical evaluation of a

fuzzy logic-based software

quality prediction model. Fuzzy

Sets and Systems 127, 199–208.

Succi, G., Pedrycz, W., Stefanovic,

M., Miller, J., 2003. Practical

assessment of the models for

identification of defect-prone

classes in object-oriented

commercial systems using

design metrics. Journal of

Systems and Software 65, 1–12.

Tang, M.-H., Kao, M.-H., Chen, M.-

H., 1999. An empirical study on

object-oriented metrics, in:

Software Metrics Symposium,

1999. Proceedings. Sixth

International. pp. 242–249.

Tegarden, D.P., Sheetz, S.D.,

Monarchi, D.E., 1995. A

software complexity model of

object-oriented systems.

Decision Support Systems 13,

241–262.

Thwin, M.M.T., Quah, T.-S., 2003.

Application of neural networks

for software quality prediction

using object-oriented metrics, in:

Journal of Systems and

Software. Elsevier, pp. 147–156.

Tichy, W.F., 1998. Should computer

scientists experiment more?

Computer 31, 32–40.

Uysal, I., Guvenir, H.A., 1999. An

overview of regression

techniques for knowledge

discovery. Knowledge

Engineering Review 14, 319–

340.

Vandecruys, O., Martens, D.,

Baesens, B., Mues, C., De

Backer, M., Haesen, R., 2008.

Mining software repositories for

comprehensible software fault

prediction models. Journal of

Systems and software 81, 823–

839.

Verma, H.K., Sharma, V., 2010.

Handling imprecision in inputs

using fuzzy logic to predict

effort in software development,

in: Advance Computing

Conference (IACC), 2010 IEEE

2nd International. pp. 436–442.

 50

Covenant Journal of Informatics and Communication Technology (CJICT) Vol.3 No.2, December 2015.

Wagner, S., 2013. Quality Planning,

in: Software Product Quality

Control. Springer, pp. 91–110.

Wahyudin, D., Schatten, A.,

Winkler, D., Tjoa, A.M., Biffl,

S., 2008. Defect Prediction

using Combined Product and

Project Metrics-A Case Study

from the Open Source, in:

Software Engineering and

Advanced Applications, 2008.

SEAA’08. 34th Euromicro

Conference. pp. 207–215.

Wang, Y., Shao, J., 2003.

Measurement of the cognitive

functional complexity of

software, in: Cognitive

Informatics, 2003. Proceedings.

The Second IEEE International

Conference on. pp. 67–74.

Witten, I.H., Frank, E., 2005. Data

Mining: Practical machine

learning tools and techniques.

Morgan Kaufmann.

Xing, F., Guo, P., Lyu, M.R., 2005.

A novel method for early

software quality prediction

based on support vector

machine, in: Software

Reliability Engineering, 2005.

ISSRE 2005. 16th IEEE

International Symposium on. p.

10–pp.

Xu, J., Ho, D., Capretz, L.F., 2008.

An empirical validation of

object-oriented design metrics

for fault prediction. Journal of

Computer Science 4, 571.

Yan, X., Su, X.G., 2009. Linear

regression analysis: theory and

computing. World Scientific

Publishing Company.

Yang, B., Yao, L., Huang, H.-Z.,

2007. Early software quality

prediction based on a fuzzy

neural network model, in:

Natural Computation, 2007.

ICNC 2007. Third International

Conference on. pp. 760–764.

Yuhas, B., Ansari, N., 2012. Neural

networks in

telecommunications. Springer

Publishing Company,

Incorporated.

Zheng, J., 2010. Cost-sensitive

boosting neural networks for

software defect prediction.

Expert Systems with

Applications 37, 4537–4543.

 51

