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Abstract: This paper surveys different software fault predictions progressed through 

different data analytic techniques reported in the software engineering literature. This 

study split in three broad areas; (a) The description of software metrics suites reported 

and validated in the literature. (b) A brief outline of previous research published in the 

development of software fault prediction model based on various analytic techniques. 

This utilizes the taxonomy of analytic techniques while summarizing published 

research. (c) A review of the advantages of using the combination of metrics. Though, 

this area is comparatively new and needs more research efforts.   
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1. Introduction 

Development of fault prediction 

models in software engineering is a 

field more than three decades old; 

however is still an emerging aspect 

of empirical software engineering 

(Catal and Diri, 2007; Kaner and 

Bond, 2004; Matsumoto et al., 2010; 

Radjenovic et al., 2013). The 

resurgence in this field occurs due to 

availability of public available data 

as repositories in recent decade and 

as well as due to the development of 

other numerical techniques, which 

have been researched in 

considerable depth(Dick et al., 

2004). 
 

A fault prediction model uses 

statistical methods to assess and 

quantify the relationship between 

different metrics and fault-

proneness of a software module 

even before it is released (Catal  and 

Diri, 2009; Catal et al., 2011; Hall et 

al., 2011; Raj Kiran and Ravi, 

2008).  
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Different object-oriented metrics 

have been proposed in the literature 

due to the increased usage of object-

oriented technology in software 

development(Aggarwal et al., 2009, 

2006; Anh, 2010; Arisholm et al., 

2010; Babic, 2012; Caglayan et al., 

2010; Catal, 2011; Chowdhury and 

Zulkernine, 2011).  
 

Predictive models quantitatively 

estimate some aspect of system 

quality and their efficiency is 

determined by fault history data and 

applied quality evaluation 

procedures(Corazza et al., 2010; 

Couto et al., 2012; Hong et al., 

2010; Janes et al., 2006; Jones, 

2008; Khoshgoftaar et al., 2006; 

Lavazza and Robiolo, 2010; Li and 

Henry, 1993; Li et al., 1991; Luo et 

al., 2010) Object oriented 

development needs a different 

strategy towards the development of 

metrics. Since, object-oriented 

technology utilize objects as its 

building blocks and contrasting 

from procedural systems, which use 

algorithms instead.  The derivation 

and consequently the selection of 

appropriate metrics depend on the 

identification of attributes of objects 

and peculiarities of object-oriented 

software development process. 

These metrics not only indicate the 

complexity of an object and its 

association (interaction) with other 

objects, but also measure different 

characteristics of a quality model 

(Figure .Error! Reference source 

not found.). 
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Figure 1: ISO/IEC 25010 Software Quality Standard (Adapted  from Wagner et al. 

(Wagner, 2013) 
 

2 Software Metrics and Suites: A 

Survey 

Software metrics can be categorized 

as product metrics, process metrics 

or resource metrics. Product metrics 

measure different features of 

developed programs like Methods 

and Class level metrics in object-

oriented systems. Process metrics 

are related to the measurement and 
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quantification of activities like 

design, implementation, testing, and 

maintenance. Resource metrics 

focus on all other resources 

involved in development such as 

programmers, cost of the product 

and processes, etc. (Ebert and 

Dumke, 2007; Koru and Liu, 2005; 

Laird and Brennan, 2006; Lanubile 

and Visaggio, 1997). 
 

These metrics have shown a 

corresponding relationship with a 

variety of external quality 

characteristics of software, such as 

reliability, testability and 

maintainability (Alshayeb and Li, 

2003; Li and Henry, 1993; Mair and 

Shepperd, 2011). 
 

Carapuça et al. (Carapucca and 

Others, 1994) suggested a 

classification skeleton that 

represents the taxonomy of Object 

oriented metrics. This framework is 

known as TAPROOT ((Taxonomy 

Précis for Object-Oriented Metrics) 

portrayed as a tubular arrangement 

with two independent vectors ( 

Figure 2); different aspects of 

measurement (design, size, 

complexity, reuse, productivity, 

quality) and the granularity 

(method, class, system) of an object-

oriented system. Though, there are 

no obvious boundaries between 

different categories and overlapping 

may be observed. However, this 

framework promotes the necessity 

of relevant metrics adequately to 

address a particular dimension of 

the software module. Figure 3 

sketches the OO design measures 

apprehending varying dimensions 

and architectural quality of a class 

identified by Briand et al. (Briand et 

al., 1998). These measures associate 

to the fault-proneness of a class.

  

 

 
 

Figure 1: Taxonomy for Object-Oriented Metrics. 
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Figure 2: OO Design Measures Related to Fault-Proneness. 
 

A concise summary of the 

development of different metrics 

(metrics suite) in the chronological 

order of their reporting is given 

below;   
McCabe T. (McCabe, 1976) proposed a 

graph-theoretic measure to compute 

program’s structural complexity known 

as Cyclomatic Complexity (CC). When 

a program is modelled as a control flow 

graph, CC is defined as follows: 

CC=e−n+p (1) 

Where n = number of vertices; e = 

number of edges and p = connected 

components. 

Conceptualising coupling as the critical 

complexity measure for fault 

prediction, Li, W. and Henry Li (Li and 

Henry, 1993) suggested two metrics 

Message Passing Coupling (MPC) and 

Data Abstraction Coupling (DAC), 

based on the coupling through message 

passing moreover, Abstract data types 

(ADT) declared in the class. Two size 

metrics i.e. SIZE 1 and SIZE 2 were 

also recommended, addressing the 

ambiguity in the determination of the 

size factor of an object-oriented 

program
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(Table 1 ). 
TABLE 1: METRICS PROPOSED BY LI AND HENRY (Li et al., 1991) 

Metric Name 

 

Description Category 

MPC(Message 

Passing 

Coupling) 

 

Number of send 

statements 

defined in a class 

Methods 

Design 

Number of 

Methods 

(NOM) 

Number of local 

methods 

Method 

Complexity 

SIZE1 Number of 

semicolons in a 

class 

Attribute size 

SIZE2 Number of 

attributes + 

Number 

of local methods 

Attribute size 

 

Chidamber, S. R. and Kemerer 

(Chidamber and Kemerer, 1994) 

proposed an extensively applied and 

validated metrics suite, commonly 

identified as Chidamber & Kemerer 

(CK) metrics suite with six metrics 

(Table 2).  
 

Hitz, M. and Montazeri (Hitz and 

Montazeri, 1995) discussed flaws in the 

determination of coupling constituent in 

CK metrics suite. They proposed two 

coupling based metrics, Coupling 

among objects(CLO) and Coupling 

among classes (CLC) by analysing the 

coupling between classes and object as 

two distinct impressions (Table 3). 

 

TABLE 2: METRICS PROPOSED BY CHIDAMBER & KEMERER (Chidamber and Kemerer, 1994) 
 

CK Metric 

 

Description Category 

Coupling Between 

Object classes 

(CBO) 

represents the 

dependence 

of one class 

over other classes 

System 

Complexity 

Depth of the 

Inheritance Tree 

(DIT) 

represents the length 

of the longest path 

from a given class to 

the root class in the 

inheritance 

tree 

Class Design 

Lack of Cohesion 

Metric 

(LCOM) 

represents the count 

of method pairs in a 

class with zero 

similarities 

Class 

Design/Method 

Complexity 

Response for the 

classes (RFC) 

represents the sum of 

the number of local 

Class Design 
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methods and remote 

methods 

Weighted Methods 

per Class (WMC) 

represents the sum 

of the complexity of 

methods. 

Method 

Complexity 

Number of 

Children (NOC) 

represents the count 

of the number of 

immediate 

subclasses of 

a class. 

Class 

Complexity 

 
TABLE 3:METRICS PROPOSED BY HITZ & MONTAZERI  
 

Metric Name 

 

Description Category 

CLO(Coupling 

among objects) 

Represents dynamic 

dependencies 

between objects 

System 

complexity 

CLC(Coupling 

among classes) 

Represents static 

dependencies 

between implementations 

System 

complexity 

 

Tegarden et al. (Tegarden et al., 

1995) introduced following metrics 

through verifying that interaction 

and inheritance are the determining 

factors in the coupling aspect of a 

class. Whereas, features like 

association and generalization-

specialization contributes towards 

the cohesiveness (Table 4). 
 

Abreu et al. (e Abreu and Melo, 

1996) proposed a MOOD (Metrics 

for Object Oriented Design) metrics 

suite comprising of the metrics 

listed in Table 5. These metrics 

capture core architectural 

ingredients of an object-oriented 

program like encapsulation, 

inheritance, polymorphism and 

message passing. Bansiya et al. 

(Bansiya and Davis, 2002) proposed 

QMOOD (Quality model for object-

oriented design) metrics suite with 

an assessment of total quality index 

as super metric. These eleven 

metrics are based on the design 

quality attributes defined in ISO 

9126 and possess an edge of early 

computability in the design process 

(Table 5). 

  

TABLE 4: METRICS PROPOSED BY TEGARDEN, D. P et. al. (Tegarden et al., 1995) 

Metric Name Description Category 

CLD(Class-to-leaf 

depth) 

Count the maximum levels 

that are below the class in 

the inheritance hierarchy 

Class 

complexity 

NOA(Number of 

ancestors) 

Count of the parent classes 

of the class. 

Class 

complexity 

NOD(Number of 

descendants) 

Count of the descendent 

classes of a class. 

Class 

reusability 
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TABLE 4: METRICS PROPOSED BY ABREU et. al. (Abreu and Melo, 1996) 

Metric Name Description Category 

 

Method Hiding 

Factor (MHF) 

Average (in per cent) 

of 

the methods visibility. 

Class design 

Attribute Hiding 

Factor (AHF) 

Average (in per cent) 

of 

the attribute visibility. 

Class design 

Method 

Inheritance 

Factor (MIF) 

Average (in per cent) 

of 

methods reusability. 

Method 

reusability 

Attribute 

Inheritance 

Factor (AIF) 

Average (in per cent) 

of 

attributes reusability. 

Class 

reusability 

Coupling 

Factor (COF) 

Average (in per cent) 

of 

class coupling. 

Class 

complexity 

Polymorphism  

Factor (POF) 

Average (in per cent) 

of 

methods overridden. 

Method 

complexity 

 

Software measurement research 

community is actively involved in 

identifying new OO metrics 

addressing more quality attributes of 

Object-oriented software. Recent 

work in this regards includes the 

following;  

Michura et al. (Michura et al., 2013) 

proposed complexity metrics to 

determine the difficulty in 

implementing changes through the 

measurement of a  method's  

complexity, diversity, and 

complexity density (Table 6). 
 

Wang et al.(Wang and Shao, 2003) 

proposed Cognitive complexity as a 

new measure to determine the 

complexity  by taking the cognitive 

and psychological parameters into 

account.  

These parameters consider internal 

structures of the artifact along with 

the processed input-output into 

consideration   to measure particular 

facet of the quality of a software. 

Misra et al. (Misra and Adewumi, 

2014; Misra, 2011; Misra et al., 

2012)proposed following  cognition 

driven complexity measures (Table 

7). 
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TABLE 6:METRICS PROPOSED BY MICHURA et al. (Michura et al., 2013) 

Metric Name Description 

Mean Method Complexity 

(MMC) 

Measures the complexity  of a class 

method obtained by dividing 

method’s cyclomatic complexity  

with the number of methods in a 

class. 

Standard Deviation Method 

Complexity (SDMC) 

measure the method diversity of a 

class by taking the deviation of a 

methods complexity from the mean 

of methods complexity into 

consideration.  

Proportion of Nontrivial 

Complexity (PNC); 

measures the class complexity 

density by identifying the proportion 

of methods whose complexity is not 

one.  

 

 
TABLE 5: METRICS PROPOSED BY MISRA et al. (Misra et al., 2012) 

Metric Name Description 

Method Complexity (MC)  Measures the complexity of a method 

by  taking logical structures used in a 

method into consideration.  This metric 

is computed by assigning a weight to 

each logical structure involved in the 

implementation of a method followed 

by summing up the complexity thus 

obtained for all methods of a class.  

Coupling weight for a class 

(CWC)  

Measures the coupling effect between 

classes by not only considering the 

number of messaged passed, but also 

taking the complexity of calling and 

called functions into consideration. 

Attribute Complexity (AC)  Measures the complexity induced in 

the class due to data members of a 

class. This metric is obtained by 

summing up the number of attributes. 

Weighted Class Complexity 

(WCC)  

Measures the class complexity as a 

whole by summing up the methods and 

attributes complexity. 

Code Complexity (CC)  Measures the complexity introduced 

due to inheritance by differentiating 

between the influence of sibling and 

child-parent relationship in the 

determination of the overall impact.  

 

3  Review of Modeling Techniques 

In recent years empirical software 

engineering has seen an increased 

usage of various data analytic 

techniques accruing to the public 

availability of a multitude of 
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software repositories (Harrison et 

al., 1998; Mende, 2010; Menzies et 

al., 2010; Mertik et al., 2006; Perry 

et al., 2000; Rodriguez et al., 2012; 

Runeson et al., 2006; Seaman, 1999; 

Shepard et al., 2001) and 

progressive research shown by 

machine learning and data mining 

community. Nonparametric 

techniques like Regression Tree, 

Random Forest, Support Vector 

Machine, Neural Network etc. have 

been extensively reported 

tang(Brady and Menzies, 2010; 

Lessmann et al., 2008; Malhotra et 

al., 2010; Succi et al., 2003; Tang et 

al., 1999; Tichy, 1998). Following is 

the review of fault prediction 

model’s evolution based on the 

grounds of applied data analysis 

routines. Fig. 4 outlines the 

categorization of the analysis 

methods studied in this section 

along with their position in the 

hierarchy of the broad spectrum of 

data science. 

 
 

 
 

Figure 3:Taxonomy of Data Analysis Techniques 
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3.1  Linear and Logistic 

Regression 

A statistical method for regression 

analysis is widely reported 

technique to construct fault 

prediction models.  

In multiple linear regression (MLR) 

technique, relationship between two 

or more independent variables (x
1
, 

x
2

 ...x
k
) with a dependent variable 

(y) is determined. The developed 

model can be viewed as Data = Fit + 

Residual.  

To fit the model (i.e. to find 

regression coefficients) the ordinary 

least square method (OLS) is 

performed minimizing the squared 

distance between predicted and 

actual values, and the value of the 

relationship computed by the model 

can be predicted from residuals 

(Uysal and Guvenir, 1999; Yan and 

Su, 2009). 

Logistic regression works like linear 

regression, except for the fact that 

independent variables may be 

categorical, and the response is a 

dichotomous outcome ranging from 

0 to 1(Runkler, 2012). 
 

Alshayeb and Li (Alshayeb and Li, 

2003) established the relationship 

between OO metrics selected from 

Chidamber and Kemerer (CK) 

metrics suite (Chidamber and 

Kemerer, 1994) and 

development/maintenance efforts 

like Lines Changed (LC), Lines 

Added (LA), and Lines Deleted 

(LD) using Multiple Linear 

Regression (MLR). Even so, such a 

relationship was limited to short-

cycled agile process and was found 

ineffective in the long-cycled 

framework process.. 
 

Basili et al. basili(Basili et al., 1996) 

used logistic regression to analyse 

the relationship between OO metrics 

and fault-proneness of classes 

during the early phases of the life-

cycle. They had evaluated each 

metric in isolation using the 

univariate method, augmented by 

multi-variate regression to evaluate 

the predictive capability of those 

metrics. The outcomes of this study 

were validated with the data 

gathered from eight medium-sized 

software modules developed in 

C++.  
 

Briand et al. (Briand et al., 2000) 

used logistic regression to the subset 

of OO metrics in the development of 

fault prediction model, owing to the 

fact that many OO metrics capture 

similar dimensions of measurement. 

The investigations were made with 

28 coupling measures, ten cohesion 

measures, and 11 inheritance 

measures. Their work concluded the 

prevalence of coupling and 

inheritance measures and cohesion 

measures were found ineffectual.  
 

Emam et al. (El Emam et al., 2001) 

illustrated the impact of 

confounding effect of class size in 

validation studies using logistic 

regression. Their study considered 

CK metrics and a subset of the 

Lorenz and Kidd metrics (Lorenz 

and Kidd, 1994) for a large C++ 

telecommunications framework. 

Supporting their argument, they 
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suggested an Export Coupling (EC) 

metric and statistically established 

its strong association with fault-

proneness. 
 

Marcus et al. (Marcus et al., 2008) 

employed logistic regression 

accompanied by principal 

component analysis (PCA) on three 

open source software systems in 

support of their new measure for 

class cohesion: Conceptual 

Cohesion of Classes (C3). Their 

work concluded the superiority of 

the C3 metric over existing 

structural metrics.  

3.2  SVM and Instance-based 

Learning 

A Support Vector Machine (SVM) 

optimally separates data points into 

two categories using a kernel 

function. Model thus developed 

using an appropriate kernel function 

is closely related to the neural 

network and generalize well, though 

starting with a small training 

sample. This engenders SVM a 

suitable technique to develop fault 

prediction models, where the 

information of complexity metrics 

in the early phase of SDLC is very 

limited. 

Elish et al. el(Elish and Elish, 2008) 

measured performance of Support 

vector machine (SVM) in 

classifying faults-prone software 

modules employing four publicly 

available NASA data sets. These 

data sets were derived from 

software projects developed in the 

different programming languages 

(C, C++, and Java). The predictive 

accuracy of the models developed 

through SVM with 21 static module 

level metrics with 10 fold cross 

validation was compared against 

eight other statistical and machine 

learning techniques (LR, KNN, 

RBF, MLP, NB, BBN, RF, and 

DT)
1
 SVM showed superior 

performance of recall measures 

whilst also maintaining significant 

high values of F-measures. 
 

Xing et al. (Xing et al., 2005) 

explored the utilization of SVM and 

its extended form (transductive 

SVM i.e. TSVM) on a random 

sample of 390(40000 lines of code) 

routines of a medical imaging 

software developed in Pascal, 

FORTRAN, assembly, and PL/M. A 

total of eleven complexity metrics 

was considered for model 

development. When compared to 

Quadratic discriminant analysis 

(QDA) as a classifier blended with 

PCA as the feature selection 

technique, SVM with RBF as the 

kernel trick based classifiers were 

reported to result in improved 

classification accuracy measures. 
 

Di Martino et al. d(Di Martino et al., 

2011) confirmed the advantages of 

using SVM as the linear classifier. 

However, they reasoned the 

applicability of SVM for non-linear 

classification. The parameters of 

underlying kernel function ought to 

be tuned by using the statistics of 

dataset. For example, in case of 

RBF as the kernel function, 

                                                 
1
 LR : Logistic regression, KNN: K-nearest neighbour, 

RBF: Radial basis function, MLP: Multi-layer 

perceptron, BBN: Bayesian belief network, NB: Naive 
Bayes, RF: Random forest, DT: Decision tree. 
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parameters like C (penalty factor for 

misclassified points) and γ (radius 

of the RBF) have an impact on 

classification accuracy. They 

recommended a genetic algorithm 

(GA) based approach to tune these 

parameters optimally for the dataset 

of Jedit software module available 

in the PROMISE data repository. 

The conclusion derived make 

evident the higher performance of 

the SVM models combined with 

GA.  
 

3.3  Bayesian and Evidence-based 

Statistics 

A Bayesian network (BN) 

represents an acyclic graph that 

embodies the joint probability 

distribution of a set of random 

variables. It models the casual 

influences on the problem and has 

not been explored in depth in the 

software measurement field, 

particularly in the predictive 

analytics of fault prediction model 

development. Construction of BN 

requires the modeling of qualitative 

influences in a domain through 

graphs and after that assignment of 

probabilities to each node in the 

representation. 
 

Pai et al. (Pai and Dugan, 2007) 

developed BN by taking all 

products, process and another 

source of information accounting for 

fault introduction in software into 

consideration. Mining of product 

and process metrics data generates 

an individual BN structure. These 

different BN structures estimate 

external quality metrics like Fault 

content, Fault Proneness, reliability, 

etc. to predict the overall quality of 

software. This study summarizes 

contradictory, but interesting results. 

Significance of WMC, CBO, RFC, 

and SLOC metrics, with MLR as the 

mechanism to construct BN, 

supports the results reported by 

Gyimothy et. al. (Gyimothy et al., 

2005) and insignificant metrics 

include DIT and NOC metrics. 
 

Fenton et al. (Fenton et al., 2002) 

developed a toolkit AgeneRisk 

(available at 

http://www.agenarisk.com) to 

generate a dynamic Bayesian 

network that allows the construction 

of causal models to any phase of 

software Life cycle. The utilization 

of toolkit exhibited significantly 

improved and validated predictive 

accuracy in a trail of 30 different 

projects. 
 

Bai et al. (Bai et al., 2005) 

developed a Markov Bayesian 

Network (MBN) to incorporate 

dynamic change in the model 

parameters of BN. To develop 

MBN, core ingredients shown are; 

initial distribution of defects 

computed from the data set, 

distribution of failure time and 

distribution of the number of defects 

removed over time. Their results 

concluded enhanced performance 

compared to traditional 

JelinskiMoranda model (JM model) 

and GoelOkumoto NHPP model 

(GO model). 
 

Dejaeger et al. (Dejaeger et al., 

2012) studied 15 different Bayesian 

Network (BN) classifiers using 
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NASA and Eclipse foundation data 

set and inferred that a general 

Bayesian network can be 

outperformed by the naive Bayes 

classifier when expanded with 

different augmentation operators 

like Tree augmenter, Forest 

augmenter, and selectively augment 

with and without discarding. 
 

3.4  Additive Models and Trees 

A classification and regression tree 

(CART) is a treelike representation 

of a succession of decisions 

involved. Each internal node 

encapsulates a decision taken to 

carry out subsequent 

predictions(Death and Fabricius, 

2000; Dvzeroski and Drumm, 

2003). In a classification tree 

(decision tree), labels are associated 

with the leaves, whereas, in the 

regression tree, the actual numerical 

value of the response variable is 

assigned to the leaf (Breiman et al., 

1993). Model trees are an extension 

of regression trees that unite a linear 

model with each of the leaves 

instead of merely a numerical value 

(Frank et al., 1998; Quinlan, 1992).  
 

The regression tree model for fault 

prediction was first reported by 

Gokhale and Lyu (Gokhale and Lyu, 

1997). Since then a large number of 

studies have used these trees-based 

regression techniques, relevant 

amongst them are following: 
 

Khoshgoftaar et al. 

kho(Khoshgoftaar et al., 2002) 

illustrated the effectiveness of a 

regression tree algorithm to identify 

fault-prone modules for 4 

consecutive releases of a large 

telecommunications system using 

24 product and four execution 

metrics.  
 

Bibi et al. (Bibi et al., 2008) 

performed regression via 

classification (RvC) by discretizing 

target variables to train the 

classification model, and then 

reversed the process to change the 

output, back into a numerical 

prediction.  
 

In this study, they experimented 

with different classification 

algorithms viz IBk JRip, PART, 

J48, and SMO available in Weka 

environment (Witten and Frank, 

2005) using Pekka data set of a 

commercial bank (Maxwell, 2002) 

to validate the superiority of RvC 

approach.  

Guo et al. guo(Guo et al., 2004) 

statistically analysed the relative 

performance of random forest over 

logistic regression and discriminant 

analysis using five case studies on a 

NASA data set. Random forests are 

variations of the decision trees and 

in this study, they generate a large 

number of such trees with the 

training data to establish the 

preponderance of random forest 

empirically.  

Chowdhury et al. (Chowdhury and 

Zulkernine, 2011) analysed 

techniques like C4.5 Decision Tree, 

random forests, and logistic 

regression. They used fifty-two 

releases of Mozilla Firefox, 

developed over a period of four 

years to compare predictive 

performances. Their study 
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concluded that the majority of the 

vulnerability-prone files in Mozilla 

Firefox can be identified with these 

techniques well within the tolerable 

false positive rates. 
 

3.5  Perceptron based Models  

Neural networks are universal 

approximation category of nonlinear 

regression method based on the 

action of biological neurons. In 

general, the term "Neural Network" 

(NN) and "Artificial Neural 

Network" (ANN) belongs to a 

Multilayer Perceptron Network. 

Additional prototypes of neural 

network include Probabilistic 

Neural Networks (PNN), General 

Regression Neural Networks 

(GRNN), Ward neural network 

(WNN), Radial Basis Function 

(RBF), Recurrent Networks and 

Hybrid Networks etc (Yuhas and 

Ansari, 2012)[Error! Reference 

source not found.].  
 

Zheng et al. (Zheng, 2010) took the 

severity of type II error into 

consideration to develop neural 

network-based predictive models. 

Type II error deals with the 

misclassification of defect-prone 

modules, whereas Type I error 

relates the misclassification of not-

defect-prone ones. Neural Network 

with cost-sensitive Adaboost 

(boosting technique) (Runkler, 

2012) manifested reduced number 

of such type II errors. 
 

Khoshgoftaar et al. (Khoshgoftaar et 

al., 1997) first illustrated the 

utilisation of neural-network for 

EMERALD (Enhanced 

measurement for early risk 

assessment of latent defects), a joint 

project of Nortel and Bell Canada to 

improve the reliability of software. 

Their results manifested that neural 

manages Type II classification error 

efficiently compared to discriminant 

analyses.  

Kanmani et al. (Kanmani et al., 

2007) compared and analysed the 

performance of Back Propagation 

Neural Network (BPN) and 

Probabilistic Neural Network (PNN) 

to predict the fault-proneness of the 

C++ modules with conventional 

logistic regression using the data set 

generated from the software 

modules developed by the graduate 

students. This study empirically 

verified the robustness of the 

predictive accuracy of PNN using 

five quality parameters.  
 

Thwin et al. (Thwin and Quah, 

2003) analysed the comparative 

performance of ward neural network 

(WNN) and General Regression 

Neural network (GRNN) to predict 

count of defects in a class and the 

number of lines change per class. A 

WNN is a back propagation network 

with three slabs in the hidden layer 

having different activation 

functions. GRNN is one-pass 

learning and memory based network 

structure. This study reasoned the 

superior predictive ability of GRNN 

over compared to WNN.  
 

3.6  Fuzzy Logic based 

Approaches 

Fuzzy based models change the 

subjective knowledge into 

mathematically explorable terms 
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and rules to create systems with a 

level of uncertainty.  
 

The use of fuzzy logic in the 

modeling of various perspectives of 

software development process is 

increasingly achieving attention of 

researchers. Following is the 

concise summary of related 

contributions published in the 

literature; 

So et al. (So et al., 2002) 

empirically analyzed the 

performance of fuzzy logic to 

predict fault-prone modules using 

inspection data. They built up an 

automated and scalable system that 

performs well, even if huge 

inspection data is not usable. 

Pandey et al. (Pandey and Goyal, 

2009) explored the effectiveness of 

fuzzy expert system in the 

prediction of the occurrence of 

faults after each phase of the 

software development life cycle 

(SDLC). Fuzzy inference system of 

their model employs eight reliability 

metrics collected for different 

phases of SDLC. 

Xu et al. (Xu et al., 2008) 

demonstrated the inference ability of 

fuzzy expert system with limited 

facts available. Their study resulted 

in the maturation of a risk 

assessment framework following 

NASA standards.  

Yang et al. (Yang et al., 2007) 

proposed a hybrid model of Neural 

and Fuzzy logic. This plan uses the 

knowledge derived from previous 

similar projects for training and 

efficiently deals with the data that is 

objective in nature. 

Muzaffar et al. (Muzaffar and 

Ahmed, 2010) analysed the impact 

of de-fuzzification and membership 

functions in the conception of a 

fuzzy logic based system for 

software development effort.  

Verma et al. (Verma and Sharma, 

2010) proposed a fuzzy logic-based 

framework for development effort 

evaluation and reported increased 

performance on an artificial and live 

project data both. Their conclusions 

statistically establish the efficacy of 

fuzzy logic based system to manage 

the imprecision in the input data. 

Aljahdali et al. (Aljahdali and Sheta, 

2011) reported encouraging 

outcomes using fuzzy nonlinear 

regression in modelling 

accumulated faults in software 

modules. 

3.7  Bio-inspired Techniques 

Evolutionary techniques are bio-

inspired meta-heuristic approaches 

and exhibit common characteristics 

(Back et al., 1997). 

1. Execution of these techniques 

begins with a population of the 

candidate solution set constituting 

the search space.  

2. A selection process identifies 

better solution through a derived 

fitness criteria depending upon the 

problem formulation. 

3. New solutions evolve through 

mutation and recombination.  

Azar et al. (Azar and Vybihal, 2011) 

optimized existing software quality 

estimation models using ant colony 

optimization (ACO) technique. 

ACO adapted with previously 

developed predictive models put to 
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use a common domain and context-

specific data for model construction. 

This permits to infer predictive 

models built for one dataset for new 

data. The result of this study 

concluded with the enhanced 

performance of ACO compared to 

C4.5 and random guessing 

techniques.  
 

Khoshgoftaar et al. (Khoshgoftaar 

and Seliya, 2003) investigated the 

influence of genetic programming 

(GP) in developing decision trees to 

solve software quality classification 

problem whilst minimizing the cost 

of misclassification and the size of 

tree simultaneously. Two initial 

releases of large windows based 

embedded systems comprising of 

more than 27 million lines of codes 

generated dataset used in this study. 

The results concluded that GP based 

decision tree modelling accounts for 

greater flexibility in building 

optimal classification models. 

Vandecruys et al. Vandecruys 

(Vandecruys et al., 2008) 

empirically verified the advantage 

of AntMiner+ classification process 

over C4.5, logistic regression and 

support vector machines using 

NASA data repository to predict 

faults in the software module. 

AntMiner+ is a classification 

method based on ACO and deduces 

a rule-based classification models 

from a dataset. The Implementation 

of AntMiner+ is accessible on the 

web (Refer 

http://www.antminerplus.com). 

Bouktif et al. (Bouktif et al., 2010) 

trained predictive model parameters 

from already built models. In the 

proposed mechanism, new models 

develop through the genetic 

algorithm based combination and 

adaptation of the expertise already 

available in existing prediction 

models. The application of this 

mechanism with decision trees over 

NASA data achieved significantly 

improved selection of models. 

Chiu et al. (Chiu, 2011) in one way 

extends the previous work of 

Bouktif et. al. [Error! Reference 

source not found.] and suggested 

an integrated decision network 

(IDN) wherein particle swarm 

optimisation (PSO) implements the 

combination and adaptation phases 

of the model development. In 

comparison to GA, PSO approach 

needs fewer complex operators, 

hence makes it more appropriate to 

design IDN. The derived results 

establish that the proposed 

mechanism outperforms individual 

software quality classification 

models and provides a deeper 

insight to decision makers. 

Nature inspired computational 

techniques like the Artificial 

Immune system have been used in 

fault prediction and performance 

and are reportedly better than J48 

classifiers (Catal and Diri, 2007). 

Search-based software engineering 

(SBSE), which utilizes nature-

inspired techniques in empirical 

software engineering is an emerging 

field.  

SBSE is gaining momentum with 

the advent of enhanced heuristic 

algorithms (Gay, 2010; Harman, 
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2010; Harman et al., 2012, 2009; 

Meziane and Vadera, 2010). 

Studies indicated below points to 

the investigations, which take 

advantage of the combination of 

some of the techniques above and 

address other relevant aspects of 

software measurement: 

Bibi et al. (Bibi et al., 2008) used a 

combination of classification and 

regression techniques by executing 

regression, via classification. 

Gyimothy et al. (Gyimothy et al., 

2005) validated metrics for fault-

proneness predictions in the 

"Bugzilla" database using a 

combination of regression and 

machine learning methods. 

Nagappan et al. (Nagappan et al., 

2006) provided an excellent step by 

step guide to develop quality 

predictors.  

Beecham et al. (Beecham et al., 

2008, 2006) and Kitchenham et.al. 

(Kitchenham et al., 2009, 2002) 

provide with notable systematic 

literature reviews (SLR) in 

empirical software engineering, 

along with an unfolded mechanism 

to administer a new, although other 

suitable literature reviews are also 

accessible (Biolchini et al., 2005; 

Petersen et al., 2008). 

Menzies and Shepperd (Menzies 

and Shepperd, 2012) express their 

opinions about the sample size, 

applied statistical techniques and the 

conclusion stability of the published 

results in the editorial of the 

"Special issue on repeatable results 

in software engineering prediction". 

This premium editorial give 

emphasis on the reproducibility of 

the published results and infers the 

studies made by Dybaa et al. 

(Dybaa et al., 2006) and 

Easterbrook et al. (Easterbrook et 

al., 2008). Further, Singer et al. 

(Singer and Vinson, 2002) 

recognizes ethical and legal issues 

implicated in empirical software 

engineering. 
 

4. Fault Prediction Using Metrics 

Combination 

The Software Development Life 

Cycle transforms artifacts like a 

software requirement specification 

(SRS) to a final product. The nature 

of the relationship between artifacts 

and suitable transformation leads to 

a large number of the resultant 

artifacts (Raffo et al., 2000). 

Combination of metrics, selected 

from different phases of the 

software development lifecycle, 

results in improved accuracy of 

predictive models.  
 

However, while combining several 

metrics; the issue of multi–

collinearity arises due to inter-

correlation among the metrics. To 

overcome this, various feature 

selection techniques like Principal 

Components Analysis (PCA) may 

be used. With PCA, a smaller 

number of uncorrelated linear 

combinations of metrics can be 

obtained na(Nagappan et al., 2006). 
 

Following are the notable works in 

this field, although somewhat 

limited in number: 

1. Wahyudin et al. (Wahyudin et 

al., 2008) examined the 
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combined effects of product 

and project metrics in the 

development of an improved 

predictive model. Their study 

used project metrics collected 

from Apache MyFaces project 

family over a span of two 

years. Through, correlation 

analysis, selected project 

metrics revealed a strong 

correlation between product 

metrics. To reduce the 

dimensionality of the 

combination of metrics, 

stepwise regression was 

applied. Their work shows the 

importance of the 

combination of metrics, 

without deliberating 

interaction between metrics.  

2. D’Ambros et al. (DAmbros et 

al., 2012) Ambros statistically 

analyzed the benefits of 

utilizing a combination of 

source code metrics and other 

metrics derived using 

information theory to predict 

bugs. The same authors 

earlier showed the 

comparative advantages of 

using the combination of CK 

and other object-oriented 

metrics (DAmbros et al., 

2010). They created a bug 

prediction data set and made 

it public. The same data set is 

being used in our research. 

3. Lee et al. (Lee et al., 2011) 

proposed 56 micro interaction 

metrics (MIMs) capturing 

developer’s behavioral pattern 

stored in Mylyn data. Metrics 

associated with behavioral 

pattern measures developer 

interaction with the 

development environment, for 

example, file editing, time 

spent on an event, etc. they 

build both classification and 

regression models using MIM 

in isolation and as well as in 

combination with other 

traditional metrics and 

empirically analyzed their 

effect on software quality. 

This experimental data of 

their study is freely available 

for future research purposes.  

This combined metrics approach of 

fault prediction may utilize different 

metrics selected from within a 

single project or across multiple 

projects. Most metrics developed for 

process, products and people relate 

to one another; therefore their 

combination will lead to the issue of 

appropriate selection of candidate 

metrics and take their interaction 

effect into account.  
 

5. Conclusion 

This paper delineates metrics, 

metrics suite and their usage to the 

applied data analytic techniques. 

Although developments of models 

make use of different kinds of 

metrics, the review of the literature 

presented here essentially focuses 

on the Object oriented metrics. In 

comparison to, procedural language 

based system, Object Oriented (OO) 

technology based systems introduce 

new abstractions and building 

blocks. Therefore, development of 
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the new set of metrics and fault 

prediction models will foster quality 

in the developed software. The 

advantages of combining metrics, 

while implementing a metrics 

program in an organisation needs 

further investigation.  
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