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Abstract— This research is aimed at the developing a modified cuckoo search 

algorithm called dynamic cuckoo search algorithm (dCSA). The standard cuckoo 

search algorithm is a metaheuristics search algorithm that mimic the behavior of 

brood parasitism of some cuckoo species and Levy flight behavior of some fruit 

flies and birds. It, however uses fixed value for control parameters (control 

probability and step size) and this method have drawbacks with respect to quality 

of the solutions and number of iterations to obtain optimal solution. Therefore, the 

dCSA is developed to address these problems in the CSA by introducing random 

inertia weight strategy to the control parameters so as to make the control 

parameters dynamic with respect to the proximity of a cuckoo to the optimal 

solution. The developed dCSA was compared with CSA using ten benchmark test 

functions. The results obtained indicated the superiority of dCSA over CSA by 

generating a near global optimal result for 9 out of the ten benchmark test 

functions. 

Keywords/Index Terms— cuckoo search algorithm, control parameters, dynamic 

cuckoo search algorithm, global optimal solution, inertia weight strategy. 

 

1. Introduction 

Nature inspired optimization techniques 

have been proven in solving many 

optimization problems efficiently 

(Yang, 2012). Optimization is a process 

of producing solutions to problem 

subjected under constrained situations 

by utilizing the resources available in 
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the best possible way (Yılmaz & 

Küçüksille, 2015). Nature inspired 

metaheuristic algorithms forms a 

significant part of modern soft 

computing, computational intelligence 

and global optimization algorithms. 

Optimization algorithms are of two 

categories: deterministic and stochastic 

(Yang, 2010a). Deterministic algorithms 

are search algorithms that generate same 

result as long initial conditions does not 

change. Stochastic algorithms are search 

algorithms that uses randomness in their 

search process there by generating 

different solutions at each run even 

when initial conditions does not change 

(Yılmaz & Küçüksille, 2015). Heuristic 

and metaheuristic approaches are the 

two types of stochastic algorithm. 

Heuristic methods are problem 

dependent methods where each 

technique can only be used for a single 

kind of optimization problem. The 

metaheuristic  - based search algorithm 

is a general solver algorithm that can be 

used for solving different kinds of 

optimization problems (Shehab et al., 

2017). Metaheuristic search algorithms 

use exploration (diversification) and 

exploitation (intensification) to generate 

a global solution. Exploration process 

guides the algorithm to search for best 

local solutions within the solution 

search space. Exploitation process 

guides the algorithm to search for global 

optimum solution within the generated 

local solutions. A balance between 

exploration and exploitation enables the 

metaheuristic search algorithm to 

converge to the global optimum solution 

(Civicioglu & Besdok, 2013). 

The power of metaheuristic search 

algorithms comes from their inspiration 

of nature, especially biological systems. 

These nature inspired metaheuristic 

search algorithms have been widely 

applied in solving optimization 

problems (Yang & Deb, 2009). Example 

of nature inspired metaheuristic search 

algorithms are: particles swarm 

optimization was inspired by fish 

schooling and swarm of birds (Eberhart 

& Kennedy, 1995), firefly algorithm 

mimic the flashing pattern of fireflies 

(Yang, 2009), cat swarm optimization 

algorithm mimic the trace and catch 

behavior of cats against their prey (Chu 

et al., 2006), bat algorithm works mimic 

the echolocation behavior of micro bats 

(Yang, 2010b), ant colony optimization 

algorithm mimic the ant foraging 

behavior in their colonies (Dorigo & 

Thomas, 2004), etc. 

Cuckoo search algorithm (CSA) which 

is also a nature inspired metaheuristic 

search algorithm was developed by 

Yang and Deb (2009). The algorithm 

mimics the brood parasitic behavior of 

some cuckoo species and Levy flight 

behavior of some fruit flies and birds. 

CSA has been proved to be an effective 

optimization algorithm when compared 

with other algorithms (Vaijayanthi et 

al.). The parameters; switching 

probability  aP and step size    used 

in CSA respectively guide the algorithm 

to generate improved solutions globally 

and locally. These parameters are 

significance in fine tuning of solutions 

and are utilized in the adjustment of  

convergence speed of the algorithm 

(Valian et al., 2011). The algorithm has 
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been applied in obtaining optimal 

features, obtaining optimized parameters 

of several classifiers including artificial 

neural network (ANN), support vector 

machines (SVM) parameters, etc. 

(Kamat & Karegowda, 2014). The 

algorithm is simple and effective, it has 

been successfully applied to real time 

optimization problems (Li et al., 2014).  

The drawbacks of fixed value of aP  and 

 used in the algorithm however, affect 

the generation of  an optimal solution by 

increasing the convergence time and 

decreasing the quality of the solution 

(Valian et al., 2011). Based on the 

tuning of these fixed parameters, it is 

discovered that a large value of aP  and 

small value of   increases the speed of 

convergence but decreases the quality of 

solution. Whereas, a small value of aP  

and a large value of   increases the 

quality of solution but decreases the 

performance and convergence speed of 

the algorithm (Zhang et al., 2016). 

Likewise, the standard CSA update the 

current solution by using Levy flight 

which is based on methods of Markov 

chain, to generate the global solution 

based on the current solution and the 

transition probability. This search 

process of the algorithm slow down the 

convergence speed and lower its 

accuracy (Qu & He, 2015). 

Thus, to improve the convergence speed 

of the standard CSA and avoid its 

possibility of converging to local 

minima, several variations of the CSA 

have been developed (Li et al., 2014). 

This research also focuses on the 

modification of the standard CSA by 

introducing inertia weight to the control 

parameters, aP  and  . The inertia 

weight will dynamically define the 

control parameters with respect to the 

position of a cuckoo in the solution 

search space and established balance 

between exploration and exploitation. 

The proposed modified CSA with 

dynamic control parameter is aimed at 

improving the exploitation capability 

and increase the convergence speed of 

the standard CSA. 
 

2. Cuckoo Search Algorithm 

This algorithm belongs to the class of 

swarm intelligence algorithm that is 

inspired by the strategy of cuckoo bird 

reproduction in combination with the 

behavior of Lѐvy flight of some fruit 

flies and birds. Cuckoo birds lay their 

eggs in a randomly chosen nest of some 

birds by removing host eggs thereby 

increasing the chance of hatching their 

own laid eggs (El Aziz & Hassanien, 

2016). Yang and Deb in 2009 developed 

CSA by mimicking the brood parasitism 

of some cuckoo species (Fister Jr et al., 

2013), in conjunction with the behavior 

of Lѐvy flight of some fruit flies and 

birds (Yang & Deb, 2009).  

The CSA has been summarized into 

three idealized rules (Yang & Deb, 

2009): 
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a. Each cuckoo lays an egg in a 

randomly selected nest at a 

time; 

b. The nests with eggs eggs will be 

passed over to next generations; 

c. The probability of discovering 

an alien egg by the host bird is 

define by  0,1aP  . Thus, the 

discovered egg can either be 

throw away or the nest is 

abandoned so as to build a new 

nest completely.  

For simplicity and implementation of 

the last rule, a fraction aP  (called 

switching probability) of the nest 

population are replaced by a randomly 

generated nests as new solutions (Yang 

& Deb, 2009). In fact, this parameter 

establish the balance between 

exploration and exploitation of the CSA 

search process (Fister Jr et al., 2013).  

The local search stage of the algorithm 

employs a balanced combination of 

random walk (local and global 

explorative random walk) controlled by 

the aP  as switching parameter. Equation 

(1) present the mathematical 

implementation  of local random walk 

(Yang & Deb, 2014): 

   1t t t t

i i a j kx x s H P x x      

  (1) 

Where;  denotes two different 

solutions randomly selected by random 

permutation, s denotes step size, H(u) is 

a Heaviside function define as a unit 

step discontinuous function whose value 

is zero and one for negative and positive 

argument respectively (Weisstein, 

2002),  denotes a random number 

selected from a uniform distribution. 

The global random walk for exploring 

the solution search space utilized a Lévy 

flights to generate new solutions. This is 

mathematically modelled as equation (2) 

(Yang & Deb, 2014): 

 1 ,t t

i ix x L s                 

(2) 

Where  is obtained using equation 

(3)  

 
 

 01

sin
12

, , 0L s s s
s 


  


 

 
  

 
  

 (3) 

In equation (2), new solutions  are 

generated when for a cuckoo i using a 

Lévy flight with a step size α > 0 

modelled as the scales of the problem of 

interests.  denotes an entry - wise 

multiplication similar to the one used in 

PSO, but the random walk based Lévy 

flight here explore the solution search 

space more efficiently in the long run 

when step length is much longer (Fister 

Jr et al., 2013; Yang & Deb, 2009).

. 
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                                Figure 1. Flow Chart of Standard CSA 

 
 

3. Dynamic Cuckoo Search Algorithm 

The development of dynamic CSA was 

built upon the existing standard CSA, 

dynamic control parameters was 

developed by incorporating random 

inertia weight strategy to the control 

parameters of the CSA so as to improve 

the convergence speed and accuracy of 

the standard CSA. 

3.1 Random Inertia Weight Strategy 

The concept on inertia weight was first 

introduced in 1998 by Shi and Ebahart 

for the purpose of tuning the parameters 

of PSO algorithm (Bansal et al., 2011). 

According to Chauhan et al. (2013), 

inertia weight is a function of evolution 
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speed and aggregation degree factor that  

dynamically changes based on 

evolution. Large inertia weight is use for 

global search while for local search, a 

small inertia weight is used (Shi & 

Eberhart, 1998).  Inertia weight 

approaches include linear, nonlinear, 

exponential, adaptive or self - adaptive,  

distribution based random adjustments, 

chaotic and fuzzy rules based strategies 

(Chauhan et al., 2013). Inertia weight 

strategy regulates the trade - off between 

global and local search of a swarm 

based algorithm. The balanced between 

global and local search of the algorithm 

increases the convergence speed (Ojha 

& Das, 2012). 

In order to enhance the exploitation 

capability of CSA, the idea of inertia 

weight was introduced to the control 

parameters of CSA in the form of 

dynamic value of iteration weight and 

was implemented. 

The dynamic value iteration weight 

given in equation (4) was introduced in 

order to improve the convergence speed 

and optimal performance of the standard 

CSA.  

  

     (4) 

Based on equation (3.1), the fixed 

control parameters of the standard CSA 

were made to be dynamic with respect 

to the position of the cuckoo as the 

iteration increases. The resulting control 

parameters i.e. control probability and 

step size are respectively modified as 

shown in equation (5) and (6). 

    

   (5) 

     (6) 

where rand is a uniform random 

number,  is the step size, w is the 

inertia weight s is a randomly chosen 

nest and best is the current best solution. 

The local search equation of the 

modified CSA is then written in 

equation (7) 

       (7) 

Where the step size ( ) controls the 

heavy tailed step size in generating new 

solutions. 

3.2 Benchmark Test Functions 

The test of efficiency, validation and 

reliability of optimization search 

algorithms has been carried in literature 

set of selected benchmarks test 

functions (Jamil & Yang, 2013). There 

are different benchmark test functions 

that are used for testing the performance 

of new and modified optimization 

algorithms (Yang & Deb, 2009). Ten of 

such optimization test functions used in 

this research work. 

To enhance the understanding of these 

benchmark test functions by visualizing 

the local minimal point, Figure 2 – 11 

were generated from MATLAB 

environment to show the shapes and 

surfaces of the test functions (Haruna et 

al., 2017).  

a. Ackleys’ function 

This is one of the classical functions 

used in testing several continuous 

optimization techniques. It has a single 
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global minimum surrounded by many 

local minima. Equation (8) presents the 

mathematical model of this function (Li 

et al., 2013): 

 
2

( )

1 1

1 1 1
20exp exp cos 2 20

5

n n

x ii
i i

f x e
n n

x 
 

   
        

   
         

(8) 

Where 1,2,...n   and its’ test area is 

typically limited to hyphercube 

for i=1,2,…,n. 

The global minimum of the function is 

 . 

The Ackley function visualization in 3D 

is as shown in Figure 2 

 
                                  Figure 2. Ackley Function 

 

 

b. De Jong’s first function 

This function is among the simplest 

benchmark function, which is 

continuous, unimodal and convex. Its 

mathematical expression is shown in 

equation (9) (Molga & Smutnicki, 

2005): 

 

 
2

1

n

ix i
f x


    (9) 

The search boundary of this function is 

 with 

global minimum at     

`  The 

visualization of the function in 3D is 

presented in Figure 3. 

 

 

 
                                 Figure 3. De Jong Function 
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c. Easom’s function 

This is another unimodal function, with 

global minimum surrounded with many 

local minima and it has small area 

comparative to the solution search 

space. This function is a minimization 

problem with only two variables. 

Equation (10) presents the mathematical 

description of the function (Molga & 

Smutnicki, 2005): 

          2 2

,
cos cos exp

x y
f x y x y      

  (10) 

The global minimum of the function is 

f(x} = −1 at (π, π) in a minute region. The 

3D visualisation of Easom function is as 

shown in Figure 4.  

 

 
Figure 4. Easom Function 

 

 

d. Griewangk’s function 

Griewangk’s function contains many 

widespread local minima regularly 

distributed, but a single global 

minimum, the function is expressed 

mathematically as (Yang & Deb, 2009): 

          

(11) 

The global minimum of this function is 

f(x)=0, at xi=0, for i=1,…n. The 3D 

visualization of this function is shown in 

Figure 5. 

 

 
                            Figure 5. Greiwangk Function 

 

e. Michalewicz’s function 

This function belongs to the class of 

multimodal test function with d! local 

optima. The “steepness” of the valleys 

or edges is defined by a parameter ‘m’. 

The more the size of m the more 

difficult the search become. When the 

size of m is very large, the function acts 

like a needle in haystack (i.e. the values 

outside the narrow peaks of points in the 

solution search space gives slight 

information on the position of the global 

optimum). The function is 

mathematically expressed as (Molga & 

Smutnicki, 2005): 

   

2
2

1
sin sin

m

d i

ix i

ix
f x



  
    

   
  
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 (12) 

Where 10m  , 0 ix    and 

1,2,...,i d . The global minimum is 

  1.801
x

f   for 2d  , while 

  4.6877
x

f   for 5d  .
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                          Figure 6. Michalewicz’s function 

 
 

 

f. Rastrigin’s function 

This function is derived from De Jong’s 

function by adding cosine modulation to 

generate regular local minima. It is 

highly multimodal but the locations of 

the minima are frequently distributed. 

Equation (13) defined the mathematical 

model of this function as (Molga & 

Smutnicki, 2005): 

   2

1
10 10cos 2

d

i ix i
f d x x


    

  (13) 

The global minimum of this function is 

 where 1,2,...,i d . The 3D 

visualization of this function is 

presented in Figure 7. 

 

 
Figure 7. Rastrigin Function 

 

g. Rosenbrock’s function 

The valley of this function (also called 

Banana function) is considered as 

classic optimization problem (Tang et 

al., 2007). The function has a global 

optimum inside flat valley that is long, 

narrow and parabolic shaped. It is trivial 

obtaining the valley but difficult to 

converge to global optimum. This 

function has been used in determining 

the performance of many optimization 

search algorithms. The mathematical 

expression of this function is presented 

in equation (14) (Yang, 2010b): 
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1
2 2 2

1

1

( ) (( 1) 100( ) )
d

i i i

i

f x x x x






          

(14) 

The global minimum of this function is 

(x) 0f   occurs at (1,1,...,1)ix   in the 

search domain of 2.048 2.048ix    

where 1,2,...,d 1i   . The 2D 

representation of equation (14) is shown 

in equation (15) 

     
22 2, 100f x y x y y x     

 (15) 

 

 
Figure 8. Rosenbrock Function 

 

 

h. Schwefel’s function 

Schwefel’s function is a multimodal 

function with global minimum 

geometrically distant over the solution 

search space from the successive best 

local minima. This function is defined in 

equation (16) (Yang & Deb, 2009); 

   1
sin | |

d

ix i
f x


  
   (16) 

Test areas is usually bounded to 

hypercube 

. The 

global minimum of this function is 

 at 

 The global 

point of this function is at 0, which is 

shown in the 3D visualization of Figure 

9. 

 
                              Figure 9. Schwefel Function 
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i. Shubert’s bivariate function  

This is also a multimodal function with 

only two variables and mathematically 

expressed in equation (17) (Yang & 

Deb, 2009); 

     
5 5

, 1 1
cos 1 1 cos 1 1

x y i i
f i i x i y

 
             

 (17) 

It has 18 local minima in the area 

     , 10,10 10,10 .x y    

 

The global 

minima of this function is 

  186.7309
x

f   . Figure 10 shows a 3D 

visualization of Shubert function. 

 

 
                               Figure 10. Shubert Function 

 

 

j.  Sphere function 

This is a De Jong function in its simplest 

form. Sphere function is a unimodal and 

convex function mathematically 

represented in equation (18) (Yang, 

2010b) 

2

1

( )
d

i

i

f x x


                    (18) 

The local minimum of this function is 

0* f  at )0,...,0,0(* x  in a 

boundary of 15 15ix   . The 3D 

visualization of sphere function is 

shown in Figure 11. 

 
                          Figure 11: Sphere Function 

 

4. Simulation Results 

The developed algorithm has been 

implemented and coded in MATLAB 

(R2013b) environment and tested on an 

Intel Core i3–2350M, 2.30GHz with 

RAM of 4GB. The dynamic dCSA 

algorithm control parameters are defined 

as: population size 15, control 

probability range 0 – 0.25, step size 

range 0.1 – 1 and runs 25 times. The 

control parameters of the standard CSA 

algorithm are: control probability = 

0.25, step size = 1. 
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The results obtained both for the 

developed dCSA and the standard CSA 

algorithm, are tabulated in Table I. 

Table I represents performance of the 

algorithms for optimizing ten 

optimization benchmark test functions 

with respect to their global optimal. 

Both algorithms were evaluated using 

the optimization benchmark test 

functions for 25 runs each. 

From the results in Table I, it is obvious 

that dCSA outperforms the CSA with 

respect to the global optimal value in 

almost all the optimization benchmark 

functions except in test case 6 (Rastrigin 

function) where CSA outperformed the 

dCSA. However, CSA did well for this 

class of functions (low-dimensional and 

relatively easy functions), but perform 

fairly on others (high-dimensional and 

more complex functions). The 

superiority of dCSA over CSA is 

expected as inertia weight factor was 

incorporated into the control parameters 

of the CSA which makes them dynamic 

in the dCSA. The dynamic step size 

diversifies the solution search for 

sufficient exploration, while the 

dynamic control probability guides the 

evolution of dCSA towards obtaining 

the global optimal value of the 

optimization benchmark functions by 

ensuring proper balance between 

exploration and exploitation. 

 
 

                      Table I. Performance Evaluation of CSA over DCSA 
 

S/

N 

Test 

Function

s 

Global 

Minimal 

CSA dCSA 

1 Ackley 0.0000E+0

0 

9.1363E-

06 

8.8818E-16 

2 Dejong 0.0000E+0

0 

3.2228E-

06 

3.016E-260 

3 Easom -

1.0000E+0

0 

-

0.5338E+0

0 

-

1.0000E+00 

4 Greiwang

k 

0.0000E+0

0 

3.0067E-

06 

0.0000E+00 

5 Michalwi

cz 

-

9.6602+00 

-

2.9949E+0

0 

-

10.9913E+0

0 

6 Rastrigin 0.0000E+0

0 

9.6917E-

06 

9.1745E+00 

7 Rosenbro

ck 

0.0000E+0

0 

8.2910E-

06 

0.0000E+00 

8 Shwefel -

4.1898E+0

2 

-

3.9020E+0

0 

-

3.9337E+00 
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9 Shubert -

1.8673E+0

2 

-

5.7704E+0

1 

-

1.4505E+02 

10 Sphere 0.0000E+0

0 

9.7799E-

06 

1.1681E-21 

 

Note that algorithm with the best 

performances with respect to the global 

solution are shown in bold in the above 

table. 

Table I can be understood more in the 

context of the ability of each of the 

algorithm to obtain an optimum result or 

close to an optimum result by 3D 

visualizations of the results. Figures 12 

– 16 presents the 3D visualizations. 

When Ackley and De Jong function 

where compared with respect to the 

performance of both algorithm in 

optimizing the functions, the results 

obtained by the algorithms were 

presented in Table I and plot of such 

result is shown in Figure 12. 

 

 

 
Figure 12. 3D Plot of Ackley and De Jong Function 

 

From Figure 12, the more the fitness 

value move close to zero, the better the 

performance of the algorithm. Thus, it is 

obvious that dCSA outperforms CSA in 

optimizing these benchmark functions. 
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Figure 13. 3D Plot of Easom and Griewangk Function 

 

Figure 13 present the plot of Easom and 

Griewangk function each with a global 

optimum of -1 and 0 respectively. It is 

obvious from the plot that dCSA 

outperforms CSA by obtaining the 

optimum results. 

 

 
Figure 14. 3D Plot of Michalwicz and Rastrigin Function 

  

Figure 14 present the plot of Michalwicz 

and Shwefel function each with a global 

optimum of -9.66 and respectively. For 

both benchmark functions, the more the 

algorithm obtain a higher negative value 

of fitness, the better the results. Thus, it 

is obvious from the plot that dCSA 

outperforms CSA for optimizing these 

functions obtaining a closed to optimum 

result. 
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Figure 15. 3D Plot of Rosenbrock and Sphere Function 

 

Figure 15 present the plot of 

Rosenbrock and Sphere function each 

with a global optimum of 0. It is 

obvious from the plot that dCSA 

outperforms CSA by obtaining the 

optimum result of these two benchmark 

functions. 

 

 
Figure 16. 3D Plot of Shubert and Rastrigin Function 

 

Figure 16 present the plot of Shubert 

and Rastrigin function each with a 

global optimum of -1.86E+02 and 0 

respectively. For Shubert function, the 

more the algorithm obtain a higher 

negative value of fitness, the better the 

result. Thus, it is obvious from the plot 

that dCSA outperforms CSA for 

optimizing Shubert function. However, 

CSA outperforms dCSA by optimizing 

Rastrigin function in obtaining a closed 

to the global optimum of 0. 
 

 

5. Conclusion 

The dynamic cuckoo search algorithm 

(dCSA) was developed and 

implemented in MATLAB R2013b. The 

performance of the developed algorithm 

was evaluated using ten benchmark 

optimization functions. These functions 

are categorized into unimodal and 

multimodal benchmark optimization 

functions (Ackley, De Jong, Easom, 

Rosenbrock, Griewangk, Michalwicz, 

Rastrigin Rosenbrock, Shwefel, Shubert 

and Sphere). The simulation results 
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obtained shows that dCSA performed 

better when compared with the standard 

CSA in terms of precision accuracy and 

better quality results. This gives it more 

ability of escaping local minima than the 

standard CSA. 
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