

Covenant Journal of Informatics & Communication Technology. Vol. 7 No. 2, Dec. 2019

ISSN: p2354 – 3566 e 2354 – 3507 DOI:

 An Open Access Journal Available Online

BANM: A Distributed Network Manager Framework

for Software Defined Network-On-Chip (SDNoC)

Imeh Jarlath Umoh, Gazal Oluwakemi Marufat, Yahaya Basira,

Adekale Dare Abdulfatai & Momoh Omuya Muyideen

Department of Computer Engineering,

Ahmadu Bello University, Zaria, Nigeria.

Corresponding authors {ime.umoh; momuyadeen}@gmail.com

Received- May 5, 2019 Accepted- August 9, 2019

Date of Publication: December, 2019

Abstract: In the SDNoC architecture; the performance of a centralized network

manager (NM) decreases as the arrival of new requests increases. This paper

presents a review of a Balance Network Manager (BANM) as a software

implemented distributed network manager for SDNoC. BANM uses the principle

of Software Defined Network (SDN). The SDNoC network is separated into

control network and data network. BANM is executed on a dedicated core and

separates the requests from the Network Interfaces (NIs) into local request and

global request based on the distance between the source and destination. It uses

Reqcheck to determine if a request is local or global, Reqreroute is used to reroute

global requests. Local requests are handled by local BANMs, while the global

BANM handles global requests. The BANM framework is expected to reduce

control congestion on the NM in the SDNoC architecture, and increase

performance.

Keywords:. Network-on-Chip, phits, MultProcessor System-on-Chip, Software

Defined Network, Congestion Control, Network Manger

1. Introduction

The tremendous growth in technology

has led to an invention of a single chip

integrated circuits called System on-Chip

(SoC) (Jarraya et al., 2014). This consists

of components such as dedicated

hardware’s, programmable processors,

and peripheral such as the on-chip

communication architecture (for

communication between components),

 54

Imeh Jarlath Umoh, et al CJICT (2019) 7(1) 54-65

input-output interfaces, and memories

(Kreutz et al., 2015). A more complex

chips that consist of multiple processor

came to existence as a result of

advancement in technology coupled with

the demand for high computing devices

(e.g. smartphones with cameras, GPS

devices, Tablets) (Jarraya et al., 2014).

These chip which consist of multiple

processors and hundreds of thousands of

additional components are often called

Multiprocessor System on-Chip

(MPSoC).

The design of a chip are characterized

with four attributes: The memory,

computation, communication, and I/O

(Avasare et al., 2005) during program

execution, MPSoC components need

interact with each other. The on-chip

communication architecture is

responsible for components

communication and accurate transfer of

data from a source component to the

destination component (Bjerregaard &

Mahadevan 2006). In order to satisfy the

application specific constraints, the

communication architecture must

provide low latency or guarantees

bandwidth.

With an increasing demand for more on-

chip modules, the bus architectures used

for communication in MPSoC cannot

scale up, hindering system performance

as required by applications (Blial et al.,

2016). Therefore, there is a need for a

solution that can meet up with

requirements such as latency, bandwidth

and power consumption even intensive

parallel communication systems. Hence,

Network-on-Chip (NoC) is proposed. It

utilizes the embedded switching network

to interconnect the modules in SoCs.

Networks-on-Chip (NoC) simplify and

improve the design of MPSoC

(Dally&Towles, 2001; Seitz, 1990)

NoCs scale well and support modularity

by decoupling communication from

computation. To support high

computations, there is a need for NoCs

ensure high performance and reliability

(e.g., packets cannot be lost) (

Konstantin et al., 2017). To provide

effective and efficient NoC

communication through manageability

and programmability, the concept of

Software Defined Network-on-Chip

(SDNoC) was introduced (Seitz 1990).

Software Defined Networks (SDNs)

aimed at decoupling both the control

(management) and data planes,

centralizes the control of information (to

provide a global view) and provides

network programmability (of

components) (Feamster & Zegura,

2013).This concept of SDN is used in the

design of SDNoC; to provide low cost,

high performance communication

architecture. The SDNoC scheme

generally relies on the centralized

network manager (NM). This NM can be

implemented in software region and run

on a dedicated core. The route for

requests are computed using the global

network view adaptively by the NM. In

order to allocate routes by the NM, the

configuration instruction are sent to the

switches so as to employ virtual circuit

switching (Konstantin et al., 2017). The

efficient handling of local requests and

non-local request is guaranteed by the

centralized NM. In order to reduce the

load on the NM, frequent events should

be handled without modifying switches

by processing requests local in scope

(i.e. requests that process events from a

single switch without using the network-

wide state).

 55

Imeh Jarlath Umoh, et al CJICT (2019) 7(1) 54-65

 The remaining of this paper is structured

as follows: Section 2 presents related

research areas. Section 3 presents the

concept of NoC, SDN and SDNoC.

Section 4 describes the distributed

Network Manager Framework and the

conclusion is provided in section 5.

2. Related Research Work

A communication service, congestion

controlled best-effort (CCBE) was

presented by Brand et al., (2010) in

order to address the effects of congestion

on network performance in NoC. CCBE

connections trade bandwidth for constant

and reduced latency. The congestion

measure that is used is link utilization.

Measurement obtained by hardware

analysis of link utilization are moved to a

Model Predictive Control (MPC). The

MPC decides the CCBE loads.

Avasare et al., (2005) presented a NoC

communication management scheme.

This scheme is based on a centralized

end-to-end flow control mechanism

which is implemented in software.

Congestion control is the main gain of

this scheme. The goal of Avasare’s

mechanism is to maximize

communication throughput and minimize

jitter (with respect to the user’s

requirements). The flow control

mechanism provides a weak form of

QoS at a low cost (i.e. good for NoC

platform targeting multimedia

applications).

Cong & Wang (2014) presented a

software define network on chip

(SDNoC) as a new on-chip network

architecture. The SDNoC separates the

network into control plane and data

forwarding plane; based on the concept

of software define networking (SDN).

The ingress router acts as the controller.

Each application is controlled by a

controller. The application have the

ability of configuring the NoC according

to their own requirements, with their

controllers (in the control plane).

Konstantin et al., (2017) presented the

SDNoC hybrid hardware/software

architecture. The SDNoC architecture

sectionalizes the network. A network

manager (NM) connects to the data

network at a rate of one hop per clock

cycle along link-disjoint routes. The

bandwidth of the links is completely

utilized by the route. As such each link is

tied to at most one route. Hence, the

critical path in the data network is a

function of the length of its link and the

delay of its endpoints (i.e., switch or NI).

The SDNoC shows excellent

performance where the is a slow rate of

new requests (local or global).

3. Fundamental Concept

The Concept of NoC

NoC is an innovative approach for the

design of system on chip (SoC) in order

to overcome some of the constraints in

bus-based data exchange in MPSoCs.

NoC interconnects the components in

MPSoCs. Therefore, the term NoC is

normally used to refer to the

communication framework of MPSoC

which consists the hardware, the

middleware, the software and the

services. This is in addition to design

tools that are used in mapping software

applications in NoC’s (Kreutz et al.,

2015).

A. NoC Architectural Principles

NoC design is composed of various

building principles. These principles are

used in different stages in the NoC such

as topology, routing and flow control.

(i) Topology: NoC topology

determines the arrangement and

interconnection of the NoC

 56

Imeh Jarlath Umoh, et al CJICT (2019) 7(1) 54-65

components physically. These

components usually include

network nodes and switches among

others. Based on the arrangements,

NoC topologies is classified into

direct, indirect and irregular

networks. Examples of topologies in

NoCs include: mesh, torus, flat tree,

butterfly, star and ring topology

(Masoudin & Ghaffari, 2016).

(ii) Routing: Routing: This is done by

routers (or switches). A routing

algorithm is used to determine how

data (packet) is routed from sender

to receiver and also decide the most

suitable path to route a message in

order to get to the destination

(receiver) with minimal cost. Based

on the network topology; the main

objective of any routing algorithm is

to ensure that traffic of packets in

the network are distributed

uniformly as possible among the

available paths. Thus, a good

routing algorithm improve network

latency and throughput. Some

common classes of routing decision

used in NoC are: centralized,

distributed, source and multiphase

routings. Due to these routing

decisions, there are different routing

algorithms that are used in NoC.

These includes oblivious,

deterministic and adaptive routing

algorithms (Masoudi & Ghaffari,

2016).

(iii) Flow control: This specifies what

and how various resources in the

network such as buffer and channel

capacities together with the control

states are allotted to data packets

that are passing through the

network. Also, it determines how

network resources are apportioned

to different data packets within the

NoC. Flow control can therefore,

reduce latency and improve the

network throughput. In order to

classify flow control techniques, the

granularity of the resource

allocation is handled based on

message, packet, or flit (Masoudi &

Ghaffari, 2016).

B. NoC Architecture

 The NoC architecture consists of three

major blocks. They are explained as

follows:

(i) Links: A link physically joins the

network nodes and facilitate

communication between them.

Thus, the link is mainly made up of

a group of electrical conductors

which joins the network nodes,

routers and switches. Thus, these

links can also include some logical

and physical connections.

Therefore, it can be said that it

include some logical and physical

connections. Therefore, it can be

said that based on aforementioned

the in NoC data transfer from a

node to another involves a serial or

a parallel communication link

(Avasare et al., 2015)

(ii) Routers: - A router consists

basically of sets of input and output

buffers, an interconnection matrix,

and some control logic. A NoC

router is composed of input ports

where the node receives incoming

packets, output ports where the node

sends outgoing packets, a switching

matrix connecting the input ports to

other output ports, and a local port

which is connected to the IP core.

The input and output can be

connected to shared-NoC channels.

During design, the router

 57

Imeh Jarlath Umoh, et al CJICT (2019) 7(1) 54-65

implements a set of defined policies

called protocols; which handles

various situations that occur during

packet transmission. These

situations include routing, deadlock,

congestion and livelock, etc. Some

factors considered in the design of

the router are: flow control policies,

buffering policies, switching

techniques and routing algorithms

(Avasare et al., 2005; Jorg et al.,

2004).

(iii) Network Interface (NIs): A network

interface provides a logical link that

connects the IP cores with the

network components. Therefore, the

NI is a vital part of the NoC that is

used to take care of control of

retransmission through

marketization and packet re-

ordering. It can also be considered

as a protocol converter that maps

the processing node (Avasare et al.,

2015).

The Concept of SDN

Software Define Network (SDN) is a

networking approach where the network

is managed dynamically through

efficient configuration so that better

performance is achieved. This is made

possible by the separation of the control

plane which decides the routing of the

traffic and the data plane which forwards

the traffic of packets in accordance with

the routing decision made by the control

plane (Kreutz et al., 2015). The three

main principle which SDN is based are

(phemins et al., 2014).

1. Separation of software and

hardware (physical) layers.

2. Centralization of control

information.

3. Programmability of the network and

its policies.

Therefore, the SDN architecture is

vertically split into three main functional

layers (Jarraya et al ., 2014):

1. The infrastructure layer (also called

the data plane): These consists

mainly of Forwarding Elements

(FEs) such as the switches and

routers.

2. The control layer (also called the

control plane): This consists of a

group of software based controllers

which strengthens the control

functionalities by means of open

Application Programmable

Interfaces (APIs).

3. Application Layer (also called

Application Plane): This consists of

business applications for end-users.

It uses up the communication and

network services of the SDN.

Figure 1 shows the router architecture of

SDN (Yeganeh & Ganjali 2012). I/O

protocol into the SDN is used within the

NoC. The separation of computation and

communication in the network is enabled

by the NI. The NI allows the reuse of IP

core and communication infrastructure

such that both of them are used

independently.

 58

Imeh Jarlath Umoh, et al CJICT (2019) 7(1) 54-65

 Figure 1: Router architecture on SDN

SDNoC Concept

This involves applying the concept of

SDN to NoC to provide effective and

efficient communication in MPSoCs.

The SDNoC-scheme is depicted Figure

2.

It works based on a central Network

Manager (NM) . The NM is

implemented as a software and executed

as a dedicated IP core. Thus, NM in the

NoC provides certain advantages. Theses

include the following (Konstantin et al.,

2017).

1. The NM has a complete picture of

the network. This facilitates

effective and efficient

apportionment of resources in the

network.

2. Computation and apportionment

of suitable packet routes less

susceptible to small changes in

network transit distances.

3. Curtailing overhead in the

network: overhead is reduced in

the network as the need for routing

tables, buffers and routers is

eliminated.

4. Curtailing overhead in data

communication: The need for

headers and control signals is

eliminated.

5. Reduction of power consumption:

This is made possible through on-

demand computation of traffic.

Figure 2 shows the SDNoC

architecture (Yeganeh & Ganjali

 59

 Figure 2: Software Defined Network on-Chip Architecture

SDNOC Architecture

The SDNoC architecture consists of: the

physical network, network interfaces

(NIs), switches and network manager

(NM), the components and their

relationship are as shown in Figure 2. In

SDNoC; packets (partitioned messages

by the cores) containing information

such as source, destination and contents

are transmitted between cores. Each of

the packet is splitted into a number of

flits (basic data units delivered over links

in the data network) of the same length.

The flit is also partitioned into phits

(strings which are received along a link

in one complete clock). The length of a

phit is usually equals the number of data

bits per link (Konstantin et al., 2017).

The block diagram of the SDNoC is

depicted in Figure 3.

Figure 3: Block diagram of SDNoC

Control Network

Network

Manager

Data Network

Cor

e

Switch

es

Network

Interfaces

 60

A. Physical Network

The SDNoC architecture separates the

physical network into control and data

network.

(i) Data Network: Data network

comprises of two elements, the

network interface (NI) and the

switch. Packets are delivered via the

link route in the network. The

length of a link and the endpoint

delay determines the critical path of

the network.

(ii) Control Network: The control

network provides the framework

using a network manager in which

all the network interfaces are linked.

A centralized network manager is

usually employed.

B. Network Interfaces (NI)

As shown in Figure 4, the network

interface is links the core to the switch.

The NI hands bi-directional traffic. An

incoming packet is first stored in the

NI’s buffer before being forwarded to its

core. A single port used between the NI

and the switch prevents simultaneously

sending and receiving packets.

C. Switches

The Switches (or routers) handle the

transmission of packets. Switches

contains several ports which can act as

either an input port or output port but at

the same time. The bidirectional links

helps in connecting switches to its

neighboring switches. At any point when

each switch forward phits from its input

to its output port, route is being created

in the data network. Switches do not

require buffers because it has the ability

to store one phits per input port for one

clock cycle. Configuration instructions

are sent to the switches by the network

manager (NM), defining active input and

output ports.

D. Network Manager

The network manager (NM) resides on

the control plane (control network). Its

responsibility is to control the network.

The NI sent a request for routing of

packet to the NM. The NM has a global

information of the entire network. It uses

a FIFO queue to store all requests

awaiting a route. Most recent request

also join the queue. The NM stores the

global information for routes allocation

(Konstantin et al., 2017; Sandoval et al.,

2015).

4. BANM: A Distributed Network

Manager

Limiting the load on the NM is essential

for realizing SDNoC, i.e. a system with

congestion control. This involves

limiting the overhead of frequent events

(local events) in the network. The

performance of the centralized NM is

inversely proportional to packet arrival

time. In accordance to the distance

between the source and destination

request (Konstantin et al., 2017)

classified the request as local and global.

We propose BANM; a distributed

network manager that classifies request

into local (frequent events) and global

(rare events). BANM leverages the

concept used in Kandoo and Orion

(Yeganeh et al., 2012 & Fu et al., 2015).

BANM is implemented using python

programming language on a dedicated

core, using python programming

language. BANM creates a level two

order for network managers. They are

the local network managers which

execute local requests even closer to

switches, and a logically centralized

global network manager that run global

requests.

A. BANM

A BANM network consists of both local

BANMs and global BANM that are

logically centralized. The NMs combines

to form BANM distributed network

manager. BANM supports the OpenFlow

specification of SDN. Each switch is

connected to a local NM, and a local NM

 61

Imeh Jarlath Umoh, et al CJICT (2019) 7(1) 54-65

can control multiple switches. The global

NM connects to all local NMs in the

network. The BANM local NM will be

deployed close to the switches. Figure 4

shows a BANM network with four

BANMs: 3 local BANMs controlling

switches and a global BANM.

Figure 4: A BANM Network

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

N1

Core

Switch

Global

BANM Local

BANM

Local

BANM

Local

BANM

 62

Imeh Jarlath Umoh, et al CJICT (2019) 7(1) 54-65

B. How BANM works

BANM achieves classification of

requests (local and global) using Request

Detection Applications (Reqcheck and

Reqreroute), located in each local

BANM. The Request Detection

Applications works at the NM. The

Reqcheck is

activated at the NM, after the NM

receives a request from the NI. The

request is checked using the distance of

the end to end (source and destination)

i.e. if source and destination belong to

the same cluster –cores located within

the NM cluster. On detecting a request is

local; the NM sends a start-reply. A

start-reply is an instruction given to the

NI to start sending/receiving packets. If

request is global; the Reqcheck notifies

the Reqreroute, which reroutes the

request to the global BANM, which in

turn sends a start-reply to the appropriate

NI. Thus, Reqreroute requests can only

be handled by the global BANM, while

Reqcheck is local and can be run by all

BANM.

5. Conclusion

This work proposes to improve the

performance of a centralized Network

Manager (NM) in SDNoC architecture.

For this purpose, we suggest BANM, a

distributed network manager framework

that consists of local BANMs and a

global BANM. The BANM is

implemented using python programming

language which run as a program on a

dedicated core. Local BANMs are

connected to the global BANM. BANM

classifies requests into local requests and

global requests. The classification is

done using the span between source and

destination. Local requests are run on the

local BANM, while global requests are

run on the global BANM. The BANM

framework enables the NM provides

flexibility (in introducing features such

as security, QoS etc.) in conjunction with

scalability to the SDNoC architecture.

References

[1] Avasare, P., Nollet, V., Mignolet, J.

Y., Verkest, D., & Corporaal, H.

“Centralized end-to-end flow

control in a best-effort network-

onchip,” in Proceedings of the

5th ACM international

conference on Embedded

software. ACM, 2005, pp. 17–

20.

[2] Blial O., Ben Mamoun M., &

Benaini R. (2016). An

Overview on SDN Architectures

with Multiple Controllers.

Journal of Computer Networks

and Communications, Article ID

9396525, 8 pages,

http://dx.doi.org/10.1155/2016/9396525

[3] Bjerregaard, T., & Mahadevan S.

(2006) A survey of research and

practices of network-on-chip.

ACM Comput Surv 38:1–51.

[4] Cong, L., Wen, W., & Zhiying, W.

(2014, September). A

configurable, programmable and

software-defined network on

chip. In 2014 IEEE Workshop

on Advanced Research and

Technology in Industry

Applications (WARTIA) (pp.

813-816).

[5] Dally, W. D. & Towles, B. (2001).

“Route packets, not wires: On-

chip interconnection networks,”

in Design Automation

 63

Imeh Jarlath Umoh, et al CJICT (2019) 7(1) 54-65

Conference, 2001. Proceedings.

IEEE pp. 684–689.

[6] Feamster, N., Rexford, J., & Zegura

E. (2013). The road to SDN.

Queue, vol. 11, no. 12, pp.

20:20–20:40.

[7] Fu Y., Bi J., Chen Z., Gao K., Zhang

B., Chen G., & Wu J. (2015). A

Hybrid Hierarchical Control

Plane for Flow-Based Large-

Scale Software-Defined

Networks. IEEE Transactions

on Network and Service

Management, VOL. 12, NO. 2.

[8] Jarraya Y., Madi T., & Debbabi M.

(2014). A Survey and a Layered

Taxonomy of Software-Defined

Networking. Communications

Surveys & Tutorials, IEEE,

16(4), 1955-1980. doi:

10.1109/COMST.2014.2320094

[9] Jorg Henkely, Wayne Wolfz &

Srimat Chakradhar (2004). On-

chip networks: A scalable,

communication-centric

embedded system design

paradigm y. Proceedings of the

17th International Conference

on VLSI Design (VLSID’04).

[10] Konstantin Berestizshevsky, Guy

Even, Yaniv Fais, & Jonatan

Ostrometzky (2017). SDNoC:

Software Defined Network on a

Chip. Microprocessors and

Microsystems

doi:10.1016/j.micpro.2017.03.0

05.

[11] Kreutz D., Ramos F. M. V.,

Esteves Verissimo P., Esteve

Rothenberg C., Azodolmolky

S., & Uhlig S. (2015). Software-

Defined Networking: A

Comprehensive Survey.

Proceedings of the IEEE,

103(1), 14-76. doi:

10.1109/JPROC.2014.2371999

[12] Masoudi Rahim and Ghaffari Ali

(2016). Software defined

networks: A survey. Journal of

Network and Computer

Applications,

http://dx.doi.org/10.1016/j.jnca.

2016.03.016

[13] Phemius K., Bouet M., & Leguay J.

(2014). Disco: Distributed

Multi-Domain SDN Controllers.

Network operations and

management symposium

(NOMS) IEEE; p.1–4.

[14] Sandoval-Arechiga, R., Vazquez-

Avila, J. L., Parra-Michel, R.,

Flores-Troncoso, J., & Ibarra-

Delgado, S. (2015, December).

Shifting the network-on-chip

paradigm towards a software

defined network architecture. In

2015 International Conference

on Computational Science and

Computational Intelligence

(CSCI) (pp. 869-870). IEEE

[15] Seitz, C. L. (1990). “Let’s route

packets instead of wires,” in

Proceedings of the sixth MIT

conference on Advanced

research in VLSI. MIT Press,

pp. 133–138.

[16] Van den Brand, J. W., Ciordas, C.,

Goossens, K., & Basten, T.

“Congestion-controlled best-

effort communication for

networks-on-chip,” in

Proceedings of the Conference

on Design, Automation and Test

in Europe, ser. DATE ’07. San

Jose, CA, USA: EDA

Consortium.

[17] Yeganeh S. H. & Ganjali Y.,

(2012). Kandoo: A Framework

 64

Imeh Jarlath Umoh, et al CJICT (2019) 7(1) 54-65

for Efficient and Scalable

Offloading of Control

Applications. Proc. HotSDN

’12 Wksp., pp. 19–24

 65

