

Covenant Journal of Informatics & Communication Technology. Vol. 6 No. 2, Dec., 2018

 An Open Access Journal Available Online

Security Algorithm for Preventing Malicious Attacks in

Software Defined Network (SDN)

Oluwasogo Adekunle Okunade
 1

, OluwaseyiOsunade
 2

& Emmanuel GbengaDada
 3

1
Department of Computer Science, Faculty of Sciences,

National Open University of Nigeria, Abuja, Nigeria.
2
Department of Computer Science, University of Ibadan,

Ibadan, Nigeria.
3
Department of Computer Engineering, Faculty of Engineering,

University of Maiduguri, Nigeria.

aokunade@noun.edu.ng1, seyiosunade@gmail.com
2
,

 gbengadada@unimaid.edu.ng
3

Abstract—This paper explores the success record of the Internet as well as its

shortcoming in the area of network configuration, response to fault(s), load and

change(s) that led to the concept of Software Defined Network (SDN).These

are the factors that separated combined network’s control from forwarding

planes for easier optimization, programming of network and centralization of

control logic capabilities. These had also led to new different challenges, that

open doors for new threats that were not existing or harder to exploit. SDN

prototype embraces third-party improvementas a result of hard work, that later

makes the SDN vulnerable to potential trust issue on its applications

(apps).This makes it possible for an intruder toinsert malicious

content/programs into the network packets and then forward into the

network.Codes were written to implement the designed algorithm using

white/blacklist source identification combined with Hash Bayes' Theorem

(W/B+HBT) content filter as a security measure to prevent the malicious

attack(s). It was shown that new transaction(s) from known attack source(s) are

classified as Blacklist and dropped, while those known as whitelist are

forwarded to their respective destination as a legitimate packet(s) (W/B). Those

from unknown sources were treated using Hash Bayes’ Theorem (HBT)

content filter. The result of the implementation is able to record 10% false

 51

mailto:aokunade@noun.edu.ng
mailto:seyiosunade@gmail.com2

Oluwasogo Adekunle Okunade, et al CJICT (2018) 6(2) 51-63

positive (FP) and false negative (FN) and 90% true positive (TP) and true

negative (TN) (accurate classification of packets) for the presented algorithm.

Keywords/Index Terms— OpenFlow, Flow table, Control plane, Hash Bayes’

Theorem, Security Algorithm

1. Introduction

Software Defined Network (SDN)is

anemerging innovative technology for

enabling open programmable network

environment to realize network with

efficient and dynamic nature. it

isdynamic, manageable, inexpensive

network components and high-speed

network emerging services according

(Yutaka, Hung-Hsuan&Kyoji, 2013 and

Raphael, Dietmar&Mark, 2015).Before

the advent of dynamic nature SDN, the

complexities of traditional computer

networks were being managed with

theadding of more protocols suites to

meet up with the required expectation

despite its complexity according to

(Muhammad et al.,2014).Open

Networking Foundation (ONF) is a

profitless organization dedicated to the

development,standardization, and

commercialization of SDN according to

(Wenfenget al., 2015). However, the

openness of the SDN has resulted in

security challenges that could jeopardize

its purpose of existence if left

unaddressed. This had made security a

major concerned for SDN, as a result of

its distinguishing features, conventional

network security approaches cannot be

directly applied. For the fact thatSDN

improves network performance, yet it

creates some peculiar challenges due to

its centralized control and

programmability features. It introduces

security control challenges(Diego et

al.,2013; Phillipet al., 2012; Aliet al.,

2015) in Matthew, Mahamadouet

al.,(2016).SDN can be seen as an eye-

catchinghoneypot for intruders and a

source of challenges for less equipped

network operators such

asamplifiedprospective for denial-of-

service (DoS) attacks.OpenFlow is

exposed to man-in-the-middle attacks

when Transport Layer Security (TLS) is

not used and network breaches may

result when network controllersare

shared by multiple users or

applications(Ali et al., 2015) in

(Matthew, Mahamadou&Sarhan. 2016).

Rapid changes in position and strength

of flows requires flexible move toward

successful network resource(s)

management, various number of devices

such as smartphones, tablets, and

notebooks had increased much fold to

put pressure on enterprise resources to

bring about rapid changes to network

resources and as such security

challengesto the management of Quality

of Service (QoS) (Muhammad et al.,

2014).

Internet with the use of traditional IP

based protocol has exploited it

functionality and there is a need for a

network paradigm that will take the

network to a new level,suitable for

today’sdemand of internet and its

functionality. Software Defined

Network (SDN) promised potential

basic change in network configuration

and real-time traffic management

performed (Taimur, 2017). It separates

between the network control plane and

the data plane, which provides user

applications with a centralized view of

the distributed network states (Ian et al.,

2016). It moves the control plane

outside the switches and enables an

external centralized control of data

through a logical software entity known

as the SDN controller., it decouples

software from hardware and centralizes

 52

Oluwasogo Adekunle Okunade, et al CJICT (2018) 6(2) 51-63

network state in the control layer(Ianet

al., 2016).This makes the network

administration, provisioning,

arrangement, resource optimization, and

network protection flexible using

robotic SDN programs (Vandana,

2016).This enables researchers and

practitioners to design much easier,

flexible and powerful innovative

network functions and protocolscalled

SDN (Seungwonet al., 2013). It enables

direct programming of network

operation(s) using an ordinary

computer, programmer, operating

system and programming

languages.SDNs are logically

segmented on three general regions:

Application layerthis is the management

plane responsible for the network

programming section. Control layer

hosting the network intelligent and

Datalayer(Bruce & Rossi, 2016).

The remainder of this paper is organized

as follows: Section 2 is the background

of the work, Section 3 introduces the

framework for preventing Software

Defined Networks (SDN) from

Malicious Attacks, Section 4 describes

the result derived from the given

framework in Section 3. Finally, an

important conclusion is discussed in

Section 5.

 Figure 1:Overview of Software Defined Network (Sdn) (Okunade & Osunade, 2014)

2. Background of the Work

2.1. Northbound Application

Programming Interfaces (APIs)

This is an open source-based application

interface representing the software

interface between the software modules

of the controller platform and the SDN

applications. The northbound interface

facilitates the operation by providing the

abstract view of the underlying network

and empower the direct expression of

network behavior and requirements.

2.2. Application Plane/Layer

Application plane is the topmost SDN

planethat process request of incoming

traffic and request services from the

lower layers on behalf of the received

traffic for further processing

(Hrishikesh, 2015)is composed of

network service applications, business

 53

Oluwasogo Adekunle Okunade, et al CJICT (2018) 6(2) 51-63

services, security services, and others

that benefit from abstracted global view

of the network according to their own

purposes (Cabajet al.,2014).this is an

example of Northbound Application

Programming Interfaces.

2.3. Control Plane

Control Plane handle the network

intelligence control and states, it

implement the network policies to

globally regulate the network states and

activities of the SDN. The logical

centralization of controller enabled

better decision making and maintaining

of a global view of the entire network

(Chienhung, Kuochen, and Guocin,

2017). It is the brain behind the

successful execution of any SDN

activities. According to Daojing,

Sammy and Mohsen (2016), control

plane manages the configuration of

networking devices (such as switches

and routers) and their forwarding

functions. The data plane consists of

protocols to execute the forwarding

functions according to the rules

configured by the control plane

protocols. SDN controller is the central

point of the network that enables the

administrator to apply custom

policies/protocols across the network

hardware; control plane directs the data

plane on flow forwarding and

modifications processes. The controller

is accountable for the conversion of

applications’ orders to the lower level

communication protocol used by the

data plane devices(Cabajet al.,2014).

The most widely deployed controller is

a network operating system (NOX),

controller. Nagaet al. (2015) made to

understand that controller can exercise it

dynamic nature to modified the

switchesthrough commands to adjust to

traffic requests and equipment failures

that may be observed through an event.

2.4. Southbound Application

Programming Interfaces (APIs)

This is an interface through which the

controllers are able to communicate

with the network devices such as

switches and data plane.It empowers the

direct expression of network behavior

and requirements. A controller can

implement its responsibilities on data

plane by communicating its command to

the data plane through the southbound

such as changing of forwarding

behavior of a switch through altering

offlow rule. Southbound Application

Interface (APIs) are communication

protocols between the controllers and

the data planes examples are;OpenFlow

(SDN most widely used communication

protocol), OVSDB, OpenDaylight, Onix

and HP VAN, and so on.

2.5. OpenFlow(OF)

OpenFlow communicate between the

SDN controller via southbound open

interfaces (such as OF protocol)and the

data plane.OFwas created and hosted at

the University of Stanford in 2008 for

evangelizing and supporting the

OpenFlow Community. OpenFlow is

the most widely used SDN protocol; it is

an open standard based communication

protocol that enables the control plane to

communicate with the data plane

according to (Mateus, Bruno and Katia,

2013).Wolfgang and Michael (2014)

stated that OpenFlow mainly focuses its

consideration on switches whereas other

SDN approaches focused on other

network elements such as routers.

According to Jad, David, Covington,

Guido and Nick (2008) OpenFlow

pushes difficulty to controller software

so that the controller administrator has

full control over it. This is done by

pushing forwarding decisions to a

"logically" centralized controller and

allowing the controller to add and

 54

Oluwasogo Adekunle Okunade, et al CJICT (2018) 6(2) 51-63

remove forwarding entries in OpenFlow

switches.

3. Algorithm and Implementation

3.1. Methodology

To address the aforementioned problem,

a code was written to implement the

Security Algorithm presented with

embedded security extension of SDN

OFtable rule (figure 2). This introduced

security controlextending the SDN flow

table with black/white list, which helped

to secureSDN paradigm, where control

plane will check for the authentication

of users’ application through the API

foruser’s confirmation usingwhite /

blacklist for legitimacy confirmation of

users’ request who is requesting to make

use of control plane by sending signals.

3.2. White / Black List plus Hash Bayes

theorem (W/B+HBT) Algorithm Model

Figure 3 is the W/B+HBT Security

Algorithm for preventing malicious

attacks in Software Defined Network

and process model that shows the

incoming packet/request from the

network, parsing the header field and

match against the flow table to check if

flow rule is already presented for the

source address. If checked result is (NO)

it means no existing flow rule for the

packet source address, implying that

packet/request source is communicating

with that particular destination for the

first time. The algorithm then requests

from the controller for the creation of

new flow rule for the newly arrived

requestpacket transmitting from an

unknown source. If the test checked

result is (YES) it means there is an

existing flow rule between the source

and destination of the newly arrived

packetrequesting from the network. The

algorithm further its test to check if the

identified flow rule between the basis

and target of requesting packet is

enlisted within the black or white list

security extension of the SDN OF

Architecture. If the flow rule is within

the white list, the transaction is

successfully executed by adding an

entry for it in each of the switches along

the path. Otherwise (if the flow rule falls

within the blacklist), the algorithm

generates an alarm that is sent to the

controller and it also replies by sending

a drop action to block or discard the

transaction

 55

Oluwasogo Adekunle Okunade, et al CJICT (2018) 6(2) 51-63

 Figure 2:Extended SDN Openflow (Of) Table with White/Blacklist Security Features

 Figure 3: W/B+HBT Algorithm Model

MAC Source Mac

Destination

IP Source IP Destination TCP

Source

Action Count Security

Status

00-16-…2C-

A6

00-53-..45-

00

127.10.10.

1

193.19.50.1 Forwar

d

4 Whitelist

E8-06-…FD-

3F

00-15-..99-

3C

127.10.10.

2

193.19.50.2 Drop 6 Blacklist

Flo

w

Tab

le

API Applicatio

n Plane
API

SDN Controller

Operating System

Northbo
und

Switch / Router and other Network Devices

Cont
rolle
r

Dat

a
Pl

a

n

e

 56

If otherwise (newly arrived Packet

source) not in either Black/White list,

then the algorithm applies HBT content-

based filter to calculate the Malicious

chancesof the incoming packet using

statistical Bayes’ theorem (Okunade

&Osunade, 2014).If (Malicious value)

less than (<) the set Threshold of 0.5 the

packet is forwarded/delivered to the

appropriate quarters. If the packet

calculated Malicious chance/value is

greater than (>) the set Threshold of 0.5

the packet is discarded. Whatever the

case may be the result is used to update

the white/blacklist for a subsequent

transaction(s).

 Figure 4: Some Suspicious Tokens and Associated Spamicity /Malicious Values

3.3. Word Hashing Operation

Word hashing operation is foremost

executed on the newly arrived packet

content, this is the removal of all

unwanted prefixes, affixes and suffixes

in the word(s) in order to deal with

actual root/real word. The security

algorithm contains inbuilt word hashing

filtering technique that removed all

unwanted prefixes, affixes and suffixes

special characters used around the

word(s) (especially around the

suspicious terms) by intruders to

misspelled/manipulate/

modified/mismanage tokens (such as $,

/, \, |, =, !, @, #, %, ^, &, , (,), <, >, ?, :,

‖, ’, {, [, },] and so on) used to foil the

filters. This is done on the words in

order to deal with actual root/real word,

needed to calculate the malicious

chances value using the Bayes’

theorem.Then, algorithm will match

packet token one after the other against

suspicious table’s token (Figure 4) in the

database one after the other till the end

of the suspicious table’s token and then

take the next token/word from the

packet and do the same thing till the end

of the tokens/words in the packet and

match it against the list of tokens in the

suspicious table.Then if there is matched

the spamicity value of that particular

matched token in the suspicious table

(Figure 4) will be retrieved and assign

against ―a‖ been the first matched

suspicious token follow by next

matched identify suspicious term/token

and assigned ―b‖ been the second

matched suspicious token, up to the last

matched suspicious token and assigned

it ―z‖ is the last matched suspicious

token. This assigned alphabet a to z are

the alphabet finds in the Bayes formula,

and spamicity values in (Figure 4)

assigned to each of this alphabet (a-z)

will be substituted into the Bayes

formula as showed:

 57

Oluwasogo Adekunle Okunade, et al CJICT (2018) 6(2) 51-63

* * *......*
(, , ...)

* * *.....* [(1)*(1)*(1)*........*(1)]

a b c z
p a b c z

a b c z a b c z

Then use the Bayes formula to calculate

malicious chances, result gotten out of

values substituted into the formula will

then check against the threshold value

that could set to any of: minimum with

threshold value of 0.2, medium with

threshold value of 0.3 and maximum

with threshold value of 0.5 to give if

(maliciousChances<= threshold) the

entire newly arrived packet is forwarded

to the appropriate port and then populate

packet table of SDN database whitelist.

But if otherwise (maliciousChances>

threshold) the entire newly arrived

packet is discarded and then populate a

malicious table of SDN database

blacklist.

4. Results and Discussion

This report the results of basic

evaluation of a prototype

implementation of Software Defined

Network (SDN) Security Access control

Algorithm using PhP/HTML code,

Running/loading the Algorithm is

depicted in figure 5 below.It shows that

the contents of flow table consist of

previous transactions status between

nodes that could be used to predict

further transaction, it contain source and

destination of transactions nodes IP and

MAC addresses, action(s) performed on

such transaction which could either be

―drop‖ or ―forward to the appropriate

quarters‖, security status that could be

grouped into ―blacklist‖ or ―whitelist‖

and update status that signified if the

flow table was initially populated at the

starting point of implementation or

updated by the application based on

encountered during the execution of the

application and also stated the date and

time updated.

 Figure 5:View Flowtable

Malicious Inbox (Figure 6) is the list of

received malicious packets, these are the

list of incoming packets that are

classified to be malicious rather than

been packet. They are an unwanted

packet and identified to be

dangerous.The experiment was able to

successfully group the entire algorithm

 58

Oluwasogo Adekunle Okunade, et al CJICT (2018) 6(2) 51-63

tested malicious packets as such

(malicious) therefore recorded 10%

false positive and false negative.

 Figure 6: Malicious Inbox

Packet Inbox in Figure 7 is the list of

received legitimate packets, these are

the list of incoming packets that are

classified to be legitimate rather than

been malicious. The experiment was

able to successfully group the entire

algorithm tested legitimate packets as

such (legitimate) therefore recorded

90% true positive and negative.

 Figure 7:Packet Inbox

4.1. Evaluation of Algorithm with the

Existing TopoGuard Security Method

In an existing TopoGuard Security

Method in Figure 7, once a packet send

to an host could be hijacked, subsequent

packets supplied to that particular host

would be completely hijacked and

redirected to the hijackers. The chart

shown in figure 8 represents an

evaluation of the White/Blacklist plus

Hash Bayes Theorem (W/B + HBT)

Algorithm with the Existing TopoGuard

 59

Oluwasogo Adekunle Okunade, et al CJICT (2018) 6(2) 51-63

Security where the two security methods

were tested with the same data. The

implemented TopoGuard Security

algorithm indicates that 80% legitimate

and malicious packets were classified as

True positive (+ve) and true negative (-

ve) where 20% legitimate and malicious

packets were classified as False positive

(+ve) and false negative (-ve). Whereas

the White/Blacklist plus Hash Bayes

Theorem (W/B + HBT) gives success

record of 90% True positive (+ve) and

true negative (-ve) and 10% record of

False positive (+ve) and false negative (-

ve) of legitimate and malicious packets

classification.

 Figure 8: Evaluation of Algorithm with the Existing Topoguard Security Method

4.2. Discussion of Result

The presented algorithm having

combined three examination levels.

White/Blacklist plus Hash Bayes

Theorem (W/B + HBT) Algorithm

implementation prevented false positive

or negative packets from being present.

Unlike the existing Topoguard security

method that discovers and prevents

packet(s) from being sent to a changed

or modified host address/location only,

but does not prevent the host

address/location from being changed or

modified. The algorithm (W/B + HBT)

prevents the insecure source from

sending a packet to the targeted host and

also prevents insecure (malicious

packet(s)) from been sent. Whereas the

existing Topoguard security method

only considered already hijacked host

(using source modification) from

receiving the packet.

The result of evaluation of presented

White/Blacklist plus Hash Bayes

Theorem (W/B + HBT) security

Algorithm compared against the existing

Topoguard security Algorithm, recorded

that the existing Topoguard security

Algorithm has in its records 20% false

positive and false negative and 80% true

positive and true negative. Whereas the

W/B + HBT Algorithmhave the result of

10% false positive and false negative

and 90% true positive and true negative,

which is accurate packets classification

 60

Oluwasogo Adekunle Okunade, et al CJICT (2018) 6(2) 51-63

and far better, compared with the

existing Topoguard security Algorithm.

5. Conclusion and Recommendation

5.1. Conclusion

This paper discussed in details the

developed algorithm that prevents

Software Defined Network (SDN) from

malicious attack. As a proof of concept,

it has been demonstrated and concluded

from findings that algorithm combined

source identification/authentication

(using white/blacklist) and content

filtering (using word hashing and

Bayes’ theorem) (W/B + HBT) method

of malicious

identification/authentication and packet

grouping, provides effective solution to

legitimate/malicious mail

identification/authentication and as such

prevents malicious attack from

accessing their targeted host in Software

Defined Network. The experiment was a

successful one recorded 10% false

positive and false negative, and 90%

true positive and true negative.

5.2. Recommendation

This paper recommends the use of

combined methods of source

identification using whitelist/blacklist

combined with word hashing and

Bayes’ theorem for content filtering

mechanisms/algorithm (W/B + HBT) as

a preventive measure for intrusion

prevention in Software Defined

Network (SDN).

References
Ali, S. T.,Sivaraman, V., Radford, A.,

&Jha, S. J. (2015). A survey of

securing

networksusingsoftwaredefined

 networking. IEEE Transactions

on Reliability, vol. 64, no.

3, pp. 1086– 1097.

Bruce, H. & Rossi, R. (2016). Software

Defined Networking for Systems

and NetworkAdministration

 Programs. The USENIX Journal

of Education in System

Administration. Volume 2,

Number 1.

 www.usenix.org/jesa/0201

Cabaj, K., Wytrębowicz, J., Kukliński,

S., Radziszewski, P. & Truong

D. K. (2014). SDN.Architecture

Impact on Network

 Security. Position papers of the

Federated Conference on

Computer Science and

Information Systems, pp. 143–

148. ACSIS, Vol.3

Chien-hung, L., Kuochen, W. &Guocin,

D. (2017). A QoS-aware routing

in SDN hybrid networks.

The12th International

Conference on Future Networks

and Communications. Published

by Elsevier B.V. Peer-review

under the responsibility ofthe

Conference Program Chairs.

Procedia Computer, Science 110

pp. 242–249. Available online at

www.sciencedirect.com

Daojing, H., Sammy, C.,& Mohsen, G.

(2016).Securing Software

Defined Wireless Networks.

0163-6804/16/.

IEEECommunications Magazine.

Diego, K., Fernando, M. V. R. & Paulo,

V. (2013). Towards Secure

and Dependable Software-

Defined Networks.HotSDN’13,

Hong Kong, China. ACM

978-1-4503- 2178- 5/13/08

Hrishikesh, A. D. (2015). Software

Defined Networks: Challenges,

Opportunitiesand

Trends.International Journal of

 61

Oluwasogo Adekunle Okunade, et al CJICT (2018) 6(2) 51-63

 Science and Research (IJSR)

Vol. 4 (9). www.ijsr.net Licensed

Under Creative Commons

Attribution CC BY

Ian, F. A., Ahyoung, L., Pu, W., Min, L.

& Wu, C.(2016). Research

Challenges for Traffic

Engineering in

 SoftwareDefined

Networks.IEEE Network. pp. 52-

58

Jad, N., David, E., Covington, G. A.,

Guido, A. & Nick, M. (2008).

Implementing an OpenFlow

Switch on the NetFPGA

 Platform. ANCS ’08, San Jose,

CA, USA. ACM 978-1-60558-

346-4/08/0011.

Mateus A. S. S., Bruno, A. A. N. &

Katia, O. (2013).

Software-Defined Networking

Based Capacity Sharing

in Hybrid Networks.

IEEE.

http://www.projectfloodlight.org/

floo dlight/

Matthew, N. O. S., Mahamadou, T.

&Sarhan, M. M.

 (2016).Software-Defined

Networking Concepts.Journal of

Scientific and

 EngineeringResearchArticle

3(5): 92-94.

Muhammad, H. R., Shyamala, C. S.,

Ali, N. &Bill, R. (2014). A

Comparison of Software Defined

Network (SDN) Implementation.

2nd International Workshop on

Survivable and V. Robust

 Optical Networks (IWSRON).

Procedia Computer Science 32,

pp. 1050 – 1055.

Naga, K., Haoyu, Z., Michael, F. &

 Jennifer, R. (2015). Ravana:

Controller Fault-Tolerance in

 Software-Defined Networking.

SOSR. Santa Clara, CA, USA.

ACM 978-1-4503-3451-8/15/06.

http://dx.doi.org/10.1145/277499

3.2 774996

Okunade, O. A. &Osunade, O. (2014).

A Security Architecture for

Software Defined

Networks(SDN). International

Journal of Computer Science and

Information Security, Vol. 12

(12).

Raphael, H., Dietmar, N. & Mark, S.

(2015). A Literature Review on

 Challenges and Effects of

 SoftwareDefined Networking.

 Conference on

ENTERpriseInformation Systems

/ International Conference on

Project Management /

Conference on Healthand Social

Care Information Systems

and Technologies, CENTERIS /

ProjMAN / HCist.

ProcediaComputer Science 64

pp. 552 – 561. Available online

at www.sciencedirect.com

Seungwon, S., Vinod, Y., Phillip, P.

&Guofei, G. (2013).

AVANT- GUARD:

Scalable and Vigilant Switch

Flow Management in

 Software-Defined Networks.

CCS’13, Berlin, Germany.

 ACM 978- 1-4503-2477

9/13/11.http://dx.doi.org/10.1145

/25 08859.2516684.

Systems -KES2013.Published by

Elsevier B.V. Selection and

peer-review under

 responsibility of KES

International. Science

Direct.22, pp. 810 – 819

 62

http://dx.doi.org/10.1145/2774993.2
http://dx.doi.org/10.1145/2774993.2

Oluwasogo Adekunle Okunade, et al CJICT (2018) 6(2) 51-63

www.sciencedirect.com

Taimur, B. (2017). State of the Art and

Recent Research Advances in

Software Defined Networking.

 Wireless Communications and

Mobile Computing

Hindawi.Article ID 7191647, 35

pages

 https://doi.org/10.1155/2017/71

91647

Vandana C.P. (2016). Security

improvement in IoT based on

Software Defined Networking

(SDN). International Journalof

Science, Engineering and

Technology Research (IJSETR),

Vol. 5(1). 292 ISSN: 2278 –

7798

Wenfeng, X., Yonggang, W., Chuan,

H.F., Dusit, N. &Haiyong X.

(2015).A Survey onSoftware-

DefinedNetworking. IEEE

Communication Surveysand

Tutorials, Vol.17(1). pp. 27-

51.http://www.ieee.org/publicati

ons_standards/publications/

Wolfgang, B. and Michael, M. (2014).

 Software-Defined Networking

Using OpenFlow:Protocols,

Applications and Architectural

Design Choices. Future Internet

6, pp. 302-336;

doi:10.3390/fi6020302 ISSN

1999- 5903.

www.mdpi.com/journal /future

internet

Yutaka, J., Hung-Hsuan, H. and Kyoji,

K. (2013). Dynamic

Isolation of Network Devices

UsingOpenFlow for Keeping

LAN Secure from Intra-LAN

Attack. 17th International

 Conference in Knowledge-

Based and Intelligent

Information and Engineering

Systems -

 KES2013. Published by

Elsevier B.V. pp. 810 –

819. ScienceDirect Available

online at www.sciencedirect.com

 63

