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Abstract: This paper presents an optimized solution to a capacitated vehicle 

routing (CVRP) model using firefly algorithm (FFA). The main objective of a 

CVRP is to obtain the minimum possible total travelled distance across a 

search space. The conventional model is a formal description involving 

mathematical equations formulated to simplify a more complex structure of 

logistic problems. These logistic problems are generalized as the vehicle 

routing problem (VRP). When the capacity of the vehicle is considered, the 

resulting formulation is termed the capacitated vehicle routing problem 

(CVRP). In a practical scenario, the complexity of CVRP increases when the 

number of pickup or drop-off points increase making it difficult to solve using 

exact methods. Thus, this paper employed the intelligent behavior of FFA for 

solving the CVRP model. Two instances of solid waste management and 

supply chain problems is used to evaluate the performance of the FFA 

approach. In comparison with particle swarm optimization and few other 

ascribed metaheuristic techniques for CVRP, results showed that this approach 

is very efficient in solving a CVRP model. 
              

Keywords: Optimization, CVRP, Firefly, Solid Waste Management, logistics. 

 

  

1. Introduction 

The rapid advancement in technologies 

have made logistics systems have 

become very important for revenue and 

budgetary considerations for 

government and its establishments, most 
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importantly for companies in the private 

sector. The fact that anybody on the 

planet can be all around connected has 

prompted complex transport networks 

that are exceptionally requesting and are 

winding up progressively critical. 

Hence, an efficient logistic network will 

be beneficial to companies and relevant 

business operations. To highlight the 

importance of logistics in some sectors, 

like groceries delivery, online stores 

delivery of goods, waste management, 

intra-city public transportation, 

distribution costs can increase in the 

production price up to 70%. Thus, the 

need for vehicle routing become 

necessary. 
 

Vehicle routing problem (VRP) define a 

class of optimization problems that 

involve optimizing itineraries of a fleet 

of vehicles. Researchers have over the 

years, developed a serious research 

interest in VRP due to its practical 

importance, as well as its complexity. 

The framework is employed in 

modelling an extremely broad range of 

logistic issues in various applications 

like, supply chain management, delivery 

services, public transportation, 

telecommunications and production 

planning. 

However, because of the real-life 

applications and complexity of these 

problems, a class of optimization 

algorithms is used in obtaining optimal 

solutions. Although various VRP 

problems can be combined in the form 

of a multi-objective decision problem 

which consider providing convenient 

service distribution for demands 

between predefined points in the search 

space. The aim of this study is to 

maximize route optimization, 

minimizing the total route distance in a 

search space using a firefly based 

capacitated vehicle routing problem 

model (FFA-CVRP). 
 

There are several variants to name a few 

are the             

 i. Capacitated VRP: the capacity of the 

vehicles is considered for the 

modelling of the objective function. 

 ii. VRP performing pickup and delivery 

simultaneously: models a payload 

being dropped off and collected at 

the same node point for all nodes.  

iii. VRP with Mixed pickup and 

delivery: a payload is dropped and 

picked up but not necessarily from 

the same node.  

iv. Multi depot VRP: more than one 

depot is considered in simulating this 

VRP also it can be combined with 

any other variants  

v. VRP with access time windows: time 

limitations are being implemented in 

modelling this type of VRP hence, 

the deliveries are performed in pre-

defined periods. 
 

2. Methods 

Instances are the arrangement or 

scenarios formulated by some attributes 

like number of customers, number of 

routes in some cases the route duration, 

the route distance all these will be 

discussed.  Literature demonstrated that 

the number of point (including the 

depot) and the number of routes should 

reflect the naming and formulation of 

instances. An example of a naming 

nomenclature 8101 knE   is an 

instance that has 1 depot, 100 customers 

and 8 routes. The series are usually 

named randomly by the authors. In the E 

series by (Nicos Christofides & Eilon, 

1969) where locations are generated at 

random from a uniform distribution, 

some of the instances actually come 

from (Dantzig & Ramser, 1959) and 

(Gaskell, 1967) while some are 

modifications on the capacity suggested 

       34 

../../../ZION%20MAYO/OneDrive/Documents/Research-MZ/USED/Zion_Seminar_vf.docx#_ENREF_13
../../../ZION%20MAYO/OneDrive/Documents/Research-MZ/USED/Zion_Seminar_vf.docx#_ENREF_13
../../../ZION%20MAYO/OneDrive/Documents/Research-MZ/USED/Zion_Seminar_vf.docx#_ENREF_15
../../../ZION%20MAYO/OneDrive/Documents/Research-MZ/USED/Zion_Seminar_vf.docx#_ENREF_20


Mayo Zion O.,  et al                                                                                                                    CJICT  (2018)  6(2) 33-50 
 

by (Gillett & Miller, 1974). For the M 

series, customers are grouped into 

clusters as an attempt to represent 

practical cases and some instances are 

modifications of the E series by 

considering increment in customers and 

capacity. For example, instances 

17200 knM   and 16200 knM   

differs only by the number of routes. 

These new instances were formulated 

because 16200 knM   had tightness 

very close to 1 (0.995625) that finding 

any feasible solutions maybe difficult. 

However, the optimal solution of M-

n200-k16 instance may costs less than 

the optimal solution of 

17200 knM   (Christofides et al., 

1979). The F series presents instances 

with data set from real-world 

applications, from grocery deliveries 

and delivery of goods to a gasoline 

service station (Fisher, 1994) etc. The 

A, B and P series by (Augerat et al., 

1998) proposed a situation where the 

customers and depots are randomly 

positioned in the A series and clustered 

in the B series while the demands are 

picked from a uniform distribution in 

both series. The P series are just 

modifications in the capacity and the 

routes of some instances in A, B and E. 

(N Christofides et al., 1979) defined a 

CMT benchmark set, which consists of 

modifications of some E and M series 

whereby the number of routes are not 

fixed. This set also has an addition of 

maximum route duration and service 

time values while the vehicles are 

assumed to travel at unitary speed.  
 

Various algorithms have been applied to 

CVRP to name a few are: an ant colony 

algorithm building parallel routes other 

than sequential routes for its route 

optimization (Mazzeo et al., 2004). A 

string model based simulated annealing 

algorithm is used in optimizing fuel 

consumption (Xiao et al., 2011). A 

hybrid genetic algorithm and particle 

swarm optimization for solving a 

capacitated vehicle routing problem 

with fuzzy demand, the study used GA 

to modify the PSO with the hope of 

improving its performance and used 

fuzzy variables to deal with the 

uncertain parameters in developing the 

CVRP model. However, the concept of 

smart bin data was not implemented for 

the collection, yielding a limited 

experiment (Kuo et al., 2012). A hybrid 

algorithm consisting of an iterated local 

search and a set partitioning formulation 

which could solve small size instances 

(Subramanian et al., 2013). An 

integration of lagrangian spilt and 

variable neighborhood search (VNS) 

although its resolution is impractical for 

relatively large instances (Bauzid et al., 

2015). An architecture and intelligent 

sensing algorithm to detect solid waste 

at real time in a bin monitoring system 

which will contribute to solid waste 

collection, however the sensor 

sometimes produces inaccurate output 

data, due to the irregularities of the solid 

waste pattern (Al Mamun et al., 2016). 

A new set of Benchmark Instances 

proposed by (Uchoa et al., 2017) 

presents a more detailed and balanced 

experimental scenarios using iterated 

local search set partitioning (ILS-SP) 

and unified hybrid genetic search 

(UHGS) but the UHGS  had poor 

quality solutions for instances of small 

sizes while the ILS-SP had slow 

convergence towards the solution for 

large instances. Furthermore, (Hannan et 

al., 2018) proposed modified PSO for a 

CVRP model for waste collection was 

initiated, the  Instances were generated 

from the A, B and P series, a threshold 

waste level and scheduling concepts 

were implemented and however, the 

optimization technique used could not 
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attain an optimal value for some 

instances.  
 

2.1 Firefly Algorithm (FFA) 

This algorithm is used to improve the 

route within the search space. It is 

modelled after the behavior of the 

flashing characteristics and movement 

of the Firefly. (XS Yang 2009).  The 

Firefly algorithm (FFA) like the glow-

worm swarm optimization algorithm 

(GISO) and the bioluminescent swarm 

optimization algorithm (BiSO) is in the 

classification of the luminous inspired 

insect algorithms which all belong to the 

Biological Inspired Algorithms. (Bo 

Xing and Wen-Jing Gao 2013). In this 

study, extracting the rules of the FFA, 

the ideology of the algorithm in 

relationship to CVRP are as follows: 

The nodes have high mobility due to the 

versatility in attractiveness variations, 

hence, the search space is explored more 

efficiently i.e. The best route will be 

more efficiently identified and exploited 

for vehicles to deliver to customers. The 

brightness is proportional to the 

attractiveness. i.e. a less bright firefly 

will move towards a brighter one. Thus, 

considering the fitness at each stage of 

motion, for each iteration, the nodes 

move to get a better result dropping the 

previous result to be replaced and 

continues until the maximum iteration is 

reach where there are no brighter 

fireflies, it searches randomly. The 

nodes represent each firefly. Finally, all 

fireflies are considered as unisex, one 

firefly will be attracted to other fireflies 

regardless of their gender which means 

the nodes can be heterogeneous relating 

to vehicles and the customers and still 

function on the model.  

The distinction of light intensity and 

creation of the attractiveness are two 

critical issues in the FFA.  

The attractiveness of a firefly is 

determined by its brightness which is a 

function of the objective function. 

Usually, the brightness I at a location x 

can be chosen as  xfxI )( . In a 

scenario where the light absorption 

coefficient γ is fixed, the light intensity I 

vary with the distance r, where I0 is the 

original light intensity. To eliminate the 

singularity problem at 0r in the 

expression 2r

I s  where, 
sI  is source 

light intensity, the combined effect of 

both the absorption and inverse square 

law can be approximated using the 

Gaussian form (Arora & Singh, 2013).  
2

0)( reIrI                                    (1) 

The attractiveness β of a given firefly is 

relative, since its proportional to light 

intensity of a pre-established firefly 

(Yang, 2010). Thus, leads to a variation 

with the distance ijr  between firefly i 

and firefly j. Hence, with an increase in 

the distance from its source, there is a 

measurable decrease in the light 

intensity, and light, is absorbed in the 

transmission so the attractiveness will 

vary with the degree of absorption, 

where, 0  connotes the attractiveness at 

0r .  
mrer   0)(                                (2) 

The distance between two fireflies i and 

j at ix  and jx , is represented as the 

cartesian distance where ikx  is the kth 

element of the spatial coordinate xi of 

ith firefly (Yang & Deb, 2010). 





d

k

kjkijiij xxxxr
1

2

,, )(     (3) 

The movement of a firefly i which is 

attracted to a firefly j with higher 

attractiveness (brightness) is determined 

by equation (4). 
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(4) 

The second segment of equation (4) is 

due to the attraction while the third 

segment is randomization with α being 

the randomization parameter (Sayadi et 

al., 2010) 

2.2 CVRP    

Capacitated vehicle routing problem 

defines the optimal set of routes for a 

fleet of vehicles to navigate from a 

depot to a specified set of customers 

ensuring the vehicle capacity is not 

exceeded. Figure 1 shows an instance of 

a capacitated vehicle routing problem. 

The figure contains 77 nodes (bins), 

with 1 depot located at the center of the 

grid across 10 routes (they are 

segmented in different color codes). 

Where a vehicle takes off from a depot, 

moves from one node to another and 

back to the depot, over a certain distance 

to form a route. 

 

 
Figure 1. A Scenario of CVRP 

 

The basic concept of VRP is to serve a 

set of customers to find the least 

travelled distance but when the capacity 

of the vehicle is factored, it becomes 

CVRP. The objective of this model is to 

develop an optimized routing scheme in 

other to determine a viable route that 

minimizes the total distance travelled by 

the vehicles which invariably reduces 

the total cost. There are some 

constraints accredited to the modelling 

of a CVRP explained in this study. 

Where N is the number of customers, a 

nonnegative distance cost ijd  represents 

distance from bins i to j , where ji  . 

A set of homogenous vehicles 

 Kk ,...,2,1 is available at the depot 

to either collect or deliver demand as the 

case maybe. 

A route is established by the summation 

of multiple links. A link is formed with 

the notation 
k

ijP which moves from 

customer i  through to customer j , by a 

vehicle k, where the decision variables 

are dependent of the vehicle capacity 

and the customer demand which are 

modelled as follows: 
 

 

1,

0,

k

ij

if vehicletravels from customer i to j
P

if otherwise


 


          (5)                                           

The variables take only the integer (s) 0, 

1 because the number of customers, 

vehicles and route cannot be a fraction, 

 0,1 , 0,1,2,..., ; 1,2,...,k

ijP j N k K  

              (6)                                                    

All vehicles begin and end at the depot 

i.e. each vehicle isn’t used more than 

once, 

1
1

1, 1,2,...,
N

k

ai
j ai

j

P k K



          (7) 

The vehicle must not be re-used, the 

inequality considers when a vehicle is 

also not being used at all, out of the pool 

of vehicles at the depot. When all 

vehicles are used, the expression will be 

an equal sign. Where a represents the 

depot. 

A customer is visited once, by only one 

vehicle each time, 
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1 0
0

1, 1,2,..., ; 1,2,...,
K N

k

ij

k i
j

P j N i N
 



          (8) 

There must be route continuity, 

0 0

0, 1,2,...,
N N

k k

it tj

i i

P P k N
 

            (9) 

A route distance has a limit (not 

exceeding the total travel distance) 
 

0 0

1,2,...,
N N

k k

ij ij k

i j

d P D k K
 

           (10) 

The number of routes and vehicles must 

be above 1, else the model becomes a 

TSP and not a VRP, where the former 

deals with a vehicle and a single route. 

KkNjiP
N

i

N

j

k

ij ,...,3,2;,...,3,2,1
2 2


 

      (11) 

The capacity of the vehicle must not 

exceed its maximum, there must be no 

overloading, 

max
1,2,...,k kQ Q k K       (12) 

The total demand Tq on each route must 

not exceed the vehicle capacity, 

0 0

, 1,2,...,
N N

k

j ij k

j i

q P Q k k
 

 
  

 
       (13) 

All the demand must be accomplished, 

0 0 0

0

N N
k

j ij

j i ij

T

q P
if q

q

if Otherwise

 

  
  

 


 




 
     (14) 

The total cost and travel distance are 

minimized, 

1 0 1

min
N N K

ij ijk

i j k

S d P
  

       (15) 

In the implementation of these 

constraints there are some parameters to 

consider  

Vehicle capacity: this is the ability of 

the vehicle to accommodate a certain 

amount of payload without an overload. 

Number of vehicles: One major 

difference between the TSP (travelling 

salesman problem) and VRP (vehicle 

routing problem) is that in the latter, 

more than one vehicle is used to visit the 

customers in the search space. The 

number of vehicles to be used for a VRP 

determines the speed at which 

customers can be served and also 

contributes in achieving a shorter 

service time. 

Demand: This is the amount of payload 

that is required by the customer(s), 

which inevitably determines the number 

of vehicles to be used in a specified 

space to oblige with the constraints 

where, the total demand for every route, 

must not exceed the capacity of the 

vehicle. 

Number of customers: the number of 

customers that are involved in the 

logistics is a prime factor as it can be 

used to guide a model in determining 

the other parameters and variables 

dependent on the design. It is assumed 

that the number of customers equals the 

number of nodes. 

Customer positioning: the positions and 

locations of customers are paramount in 

the result of an optimum solution 

because factors like distance and 

distribution plays part in the architecture 

and modelling of the solution method. 

Customers can be positioned randomly, 

in clusters or both cases. In this study, 

customers will be randomly positioned. 

Route size: this is the number of routes 

that the distribution can be sectioned 

into.  

Route distance: this is the length of the 

course taken from the depot to the serve 

a set of customers and back to the depot. 

It is the dimension of travel which will 

determine the total time taken and also 

the optimum solution for that given set 

of instances. Although some methods 

are best used for shorter distances while 
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some for long distances, but in this work 

will create a common ground for such 

uprising. 
 

3. CVRP Optimization Using Firefly 

Algrithm 

The firefly based technique simply 

solves the CVRP model by identifying 

the nodes (customer points) as the 

stationary fireflies and a vehicle as the 

moving fireflies. Evaluating all the 

points and the given parameters. Then, 

the vehicles are evaluated knowing 

which one is to be assigned to which 

route, after which it is attracted to the 

nearest customer location guided by the 

set constraints. This process continues 

until the CVRP is solved. Illustrations in 

this research shows two scenarios. First 

is a total of thirty-six cases of waste 

management problem and ten cases of 

supply chain problem was used to 

validate the model. This information 

was used along with the parameters for 

the optimization of the CVRP model as 

described in subsection 2.2. The total 

cost and travel distance of the CVRP 

described in equation (15) was then 

optimized using the firefly optimization 

algorithm.  
 

The simulation parameters showing the 

range of values used to achieve the 

results for both the Solid Waste 

Management and Retail Supply Chain 

are quantified in the given Table below. 
 

Table 1: Simulation Parameters 

SN Parameters Values Units 

1 Number of customers, 

N 

2 - 10 -- 

2 Number of Vehicles,  

V 

11 - 100 -- 

3 Capacity of vehicle,  

Q 

100 - 400 kg 

4 Capacity / Quantity of 

demand, q 

10 kg 

5 Travelled distance, d 20 - 1500 km 

6 Iteration (SWM & 

Supply Chain) 

120 & 500 -- 

 

In developing the Optimized routing 

scheme for the CVRP model, the 

parameters vehicle capacity (Q), number 

of customers (N) which correspond to 

the number of fireflies, number of 

vehicles (V) which correspond to the 

search dimensions and the quantity of 

load (q) were initialized. The parameters 

of the FFA algorithm which are the 

initial customer points (i), the next 

customer point (j), number of iterations, 

and population were also initialized. 
 

The fitness of these initial positions was 

evaluated, and each firefly are ranked 

according to their fitness. The vehicle 

moves from firefly i to firefly j and 

progresses in that order from the initial 

customer points (i), the next customer 

point (j), to the next point (i+1), then to 

(j+1) until the maximum number of 

fireflies is reached. 

The FFA solution search process was 

then performed in an enclosed loop and 

the fitness of the new positions were 

evaluated. The entire process was then 

evaluated over a number of iterations 

continuously until the maximum number 

of iteration is reached and the firefly 

with the overall best position is taken as 

the optimum solution as structured in 

Fig. 2. 
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Evaluate Depot Positions
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CVRP

Rank Fireflies Based on 

their Fitness

t=0

.

.

.

t<Itr

Print the Best Fitness

start

No

Yes

Generate Initial Positions of fireflies (Depot)

For i=1:n

For j=1:n

F(j)>F(i)

Evaluate fitness value of 

each firefly

Move Firefly  i' toward 

 j 

t=t+1

Yes

No

 
 

                                  Fig 2. Flowchart of the FFA-CVRP model 

Fig.2 shows the flow of the processes 

involved in the FFA implementation 

featured in a Flowchart.  
 

4. Results and Discussions 

The simulation was conducted in 

MATLAB R2015b environment, on a 

computer with Intel Core i3 @ 2.00GHz 

Processor with 4GB RAM. The main 

objective of this study is to minimize the 

total route distance applying all the 

constraints and using the parameters as 

earlier explained. It is assumed that a 

reduction in the total route distance, 

connotes a reduction in cost and time.  

Table 2 below shows the actual values 

used in formulating the thirty-six 

instances featured in (Hannan et al., 

2018). 
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Table 2. Result of FFA on CVRP Model for Instances of Solid Waste Management 

5 Datasets Q (unit) 
q  

(unit) 

TWL 

(%) 
N V 

Distance 

FFA Standard Improvement (%) PSO Improvement (%) 

1 A-n33-k5 100 10 0 32 5 622 661 5.87 661 5.87 

2 
 

  

60 28 5 499 629 20.6 599 16.63 

3 
 

  

70 25 4 407 585 30.51 518 21.52 

4 
 

  

75 21 4 367 533 31.12 430 14.62 

5 
 

  

80 17 3 304 457 33.48 316 3.8 

6 
 

  

90 12 2 219 374 41.57 212 -3.07 

  

  

   

 

   
  

7 A-n46-k7  100 10 0 45 7 842 914 7.82 914 7.82 

8 

   

60 38 7 699 895 21.91 876 20.22 

9 

   

70 28 5 413 750 44.94 615 32.86 

10 

   

75 22 4 339 634 46.53 440 22.96 

11 

   

80 18 4 310 548 43.51 329 5.91 

12 

   

90 14 3 235 449 47.59 221 -6.47 

 

   

   

  

  
  

13 A-n60-k9 100 10 0 59 9 1121 1371 18.21 1371 18.21 

14 

   

60 41 8 909 1258 27.75 1154 21.24 

15 

   

70 38 8 834 1223 31.81 1091 23.56 

16 

   

75 31 6 663 1048 36.77 801 17.27 

17 
 

  

80 29 6 528 979 46.04 699 24.43 

18 
 

  

90 19 4 317 693 54.19 350 9.29 

 

 

  

   

  

  
  

19 P-n40-k5 140 10 0 39 5 359 458 21.62 458 21.62 

20 

   

60 34 4 345 417 17.27 380 9.21 

21 

   

70 32 4 334 388 13.92 329 -1.52 

22 

   

75 25 4 333 352 5.4 271 -22.88 

23 
 

  

80 18 3 266 294 9.52 189 -40.74 

24 
   

90 12 2 192 232 17.24 118 -62.71 

 

   

   

  

  
  

25 
B-n78-
k10 

100 10 0 77 10 1091 1263 13.6 1263 13.6 

26 

 

  
60 54 9 828 1124 26.33 1000 17.19 

27 
 

  

70 43 8 732 1069 31.49 912 19.69 

28 
 

  

75 27 6 409 732 44.16 424 3.6 

29 
   

80 21 4 304 613 50.41 298 -2.01 

30 
   

90 11 2 111 346 68.01 95 
-16.52 
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31 
P-n101-

k4 
400 10 0 100 4 489 705 30.64 705 30.64 

32 
   

60 81 4 442 616 28.25 538 17.84 

33 
   

70 70 4 436 564 22.7 451 3.33 

34 
   

75 62 3 424 545 22.2 421 -0.71 

35 
   

80 55 3 411 494 16.8 346 -18.79 

36       90 33 2 193 351 45.01 175 -10.29 

 

 

The result obtained using the FFA on 

the CVRP model shows improvement 

on the distance across all instances. 

Each set of instances has same capacity 

of all vehicles while the number of 

service points and TWL (quantity of 

demand) varies. The TWL which is the 

threshold waste level, provides the 

information on the actual percentage 

filled capacity of the bin. As the number 

of nodes (bins) decreases, the route 

length logically decreases, it is expected 

that the distance decreases, thus fewer 

vehicles are needed. Although, the 

customer positions are randomly 

located. Each improvement is realized 

by the percentage difference between 

the FFA acquired distance and the 

standard from literature. When 

comparing with the standard result from 

(Hannan et al., 2018), the first set of 

instances A-n33-k5, gives a collective 

improvement of 27.19%, A-n46-k7 

gives a collective improvement of 

35.39%, A-n60-k9 gives a collective 

improvement of 35.80%, P-n40-k5 gives 

a collective improvement of 14.16%, B-

n78-k10 gives a collective improvement 

of 39.00% and P-n101-k4 gives a 

collective improvement of 27.60%.  

 

 

      
A. Dataset A-n33-k5                              B.    Dataset A-n46-k7 

 

    42 



Mayo Zion O.,  et al                                                                                                                    CJICT  (2018)  6(2) 33-50 
 

      
C. Dataset A-n60-k9                                   D.    Dataset P-n40-k5 

 

     
E. Dataset B-n78-k10                   F.    Dataset P-n101-k4 

 

Fig. 3 Plot of Travelled distance against the Instances 

The collective improvement is the 

average of the individual improvement 

in each set of instances. From the table 

above, using the FFA metaheuristic 

approach, it is observed that there is 

total improvement on all instances, this 

interprets a reduced total route distance. 

When comparing with the result from 

the PSO technique from (Hannan et al., 

2018), the percentage difference 

between the FFA acquired distance and 

the PSO approach is the % improvement 

of the FFA based model. For the first set 

of instances A-n33-k5 has an 

improvement of 9.89%, A-n46-k7 has 

an improvement of 13.88%, A-n60-k9 

has an improvement of 19.00%, P-n40-

k5 gives a decline of -16.17%, B-n78-

k10 has an improvement of 5.93% and 

P-n101-k4 has an improvement of 

3.67%. From the table above, using the 

FFA metaheuristic approach, it is 

observed that five out of the six set of 
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instances have substantial improvements 

on the total route distance. 
 

From Table 2, as the number of vehicles 

and customer points decrease, even with 

an increasing threshold waste level 

(TWL) from 0 – 90%, the total travel 

distance reduces. This is because 

technically, with a smaller number of 

vehicles and customers interprets a 

smaller number of routes which 

invariably gives a reduced travelled 

distance. Of the 36 instances where the 

FFA-CVRP model is tested on, the FFA 

has a 72% better results over the PSO. 

The graphical representation of these 

result can be seen in Fig 3. 
 

The developed model in this research 

was validated using the iterated local 

search with set partitioning (ILS-SP), 

unified hybrid genetic search (UHGS) 

and branch and cut price (BCP) methods 

presented in the work of (Uchoa et al., 

2017). The data from the result is 

analyzed in the Table below.

   
 

Table 3. Result of FFA on CVRP Model for Instances of Supply Chain 
 

    Instance Characteristics Travelled distance achieved through Metaheuristic Improvement  

# Name n Dep Cust Q 
ILS-
SP 

UHGS BCP BKS FFA Distance         (%) 

1 X-n101-k25 100 R 
RC 
(7) 

206 27591 27591 27591 27591 22572 5019 18.19 

2 X-n153-k22 152 C 
C 

(3) 
144 21340 21220 21140 21140 20538 602 2.85 

3 X-n200-k36 199 R 
C 

(8) 
402 58626 58578 58455 58455 52052 6403 10.95 

4 X-n303-k21 302 C 
C 

(8) 
794 21812 21748 21546 21546 19784 1762 8.18 

5 X-n401-k29 400 E 
C 

(6) 
745 66453 66243 65971 65971 60194 5777 8.76 

6 X-n502-k39 501 E 
C 

(3) 
13 69284 69253 69120 69120 65785 3335 4.82 

7 X-n613-k62 612 C R 523 60229 59778 59323 59323 55361 3962 6.68 

8 X-n701-k44 700 E 
RC 
(7) 

87 82888 82293 81694 81694 78617 3077 3.77 

9 X-n801-k40 800 E R 20 73830 73587 73124 73124 70175 2949 4.03 

10 X-n1001-k43 1000 R R  131 73776 72742 71812 71812 67927 3885 5.41 

 

Table 3 shows the outcome the FFA-

CVRP model on the supply chain 

instances. These set of instances is used 

to validate the FFA approach on the 

CVRP model. The result obtained from 

the FFA-CVRP simulation is compared 

to the best-known solution amongst 

iterated local search-set partitioning 

(ILS-SP), the unified hybrid genetic 

search (UHGS), the branch and cut price 

(BCP) methods which were used on the 

Instances (Uchoa et al., 2017). In this 

scenario, demand is dropped-off at each 

customer site, unlike the solid waste 

management where demand is picked. 

In Table 3, it is observed that in all cases 

there were improvements in the result. 

The Table depicts the BKS that was 

obtained considering the previously 

used three algorithms (ILS-SP, 

UHGS and BCP). The BKS was then 

used to compare the results obtained 

by the FFA. It is seen that applying 

the FFA on the CVRP model 

minimized the total travelled 

distance for X-n101-k25 by 5019m, 

for X-n153-k22 by 602m, for X-
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n200-k36 by 6403m, for X-n303-k21 

by 1762m, for X-n401-k29 by 

5777m, for X-n502-k39 by 3335m, 

for X-n613-k62 by 3962m, for X-

n701-k44 3077m, for X-n801-k40 

2949m and for X-n1001-k43 by 

3885m. This result was then 

implemented to calculate the 

percentage improvement for each of 

the Instances considered. Although, a 

slight percentage is observed in the 

improvement, this is because the 

distance covered is large, hence, the 

percentage difference compared to the 

largely covered distance will not have a 

high magnitude.  

  

 
Fig 4 Best Known Solution for supply chain Instances 

 

Fig 4 shows the plot of the travelled 

distance against the Instances for the 

supply chain. The result of FFA 

outperforms the Best Known Solution 

among the algorithms used in (Uchoa et 

al., 2017). For all the 10 instances in 

serving 100 to 1000 customers, it is 

certified that the FFA now provides the 

new best known solution (BKS) 

amongst the four techniques tested on 

the Instances. In order to further 

evaluate the performance of the 

developed method, the performance test 

given in Fig. 5 was generated. 

Results for Performance of the FFA-

CVRP Model 
 
 

                             

                             Fig 5 Perfromance of the FFA-CVRP Model 
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Fig 5 shows a graphical representation 

of the performance of the FFA-CVRP 

Model which has shown to provide 

better results over the other methods 

used in solving both large and small 

scale instances for supply chain 

across all instances. 

 

 
Fig 6 Performance of the Instances 

 

Fig 6 shows the performance if each of 

the instances, deduced from the 

difference in the BKS of (Uchoa et al., 

2017) and the FFA-CVRP Model. The 

instance X-n200-k36 has the highest 

value, which means the FFA-CVRP 

model is able to navigate channels faster 

and better with efficient productivity to 

obtain a more improved solution. This is 

due to the low ratio of the number of 

routes and the vehicle capacity to the 

number of customers and their demand 

distribution. The dip in the X-n153-k22 

instance, shows it possess the lowest 

difference between the BKS of the 

earlier techniques used and the FFA 

based model.  

The developed capacitated vehicle 

routing model using firefly algorithm 

significantly improved the total route 

distance on both large and small sized 

instances. For the solid waste 

management instances, the FFA-CVRP 

model contributed an overall 

improvement of 29.86% to the standard 

method and a 6.03% over PSO. The 

model outperformed the best known 

solution of the ILS, UHGS and BCP 

approach used on the set of instances for 

supply chain with an average 

improvement of 7.36%. All the 

observations were made assuming same 

conditions as other techniques used. The 

developed model achieved a distinct 

travel path and search in actualizing the 

best route and position to locate a depot.  
 

5. Conclusion  

This paper has presented an 

optimization of a capacitated vehicle 

routing model using firefly algorithm. 

The paper employed two instances 

comprising of waste management 

problem and supply chain problem to 

evaluate the performance of the 

developed approach. Several 

simulations were performed using 

MATLAB R2015b simulation 

environment. Results when compared 

with particle swarm optimization, 

iterated local search set partitioning, 

unified hybrid genetic search and branch 

and cut price approaches, showed that 

this approach is very effective in solving 

CVRP of different cases. For future 

research, modelling the time windows to 
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the customer availability, considering 

the effect of variable positions of depot 

and hybridizing FFA with other 

algorithms such as smell agent 

optimization (SAO) for improved 

performance can be considered. 
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