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Abstract:  
Load flow report which reveals the existing state of the power system network under steady operating conditions, subject to certain constraints 
is being bedeviled by issues of accuracy and convergence. In this research, five AI-based load flow solutions classified under evolutionary-swarm 
intelligence optimizers are deployed for power flow studies in the 330kV, 34-bus, 38-branch section of the Nigerian transmission grid. The 
evolutionary-swarm optimizers used in this research consist of one evolutionary algorithm and four swarm intelligence algorithms namely; 
biogeography-based optimization (BBO), particle swarm optimization (PSO), spider monkey optimization (SMO), artificial bee colony 
optimization (ABCO) and ant colony optimization (ACO). BBO as a sole evolutionary algorithm is being configured alongside four swarm 
intelligence optimizers for an optimal power flow solution with the aim of performance evaluation through physical and statistical means. 
Assessment report upon application of these standalone algorithms on the 330kV Nigerian grid under two (accuracy and convergence) metrics 
produced PSO and ACO as the best-performed algorithms. Three test cases (scenarios) were adopted based on the number of iterations (100, 
500, and 1000) for proper assessment of the algorithms and the results produced were validated using mean average percentage error (MAPE) 
with values of voltage profile created by each solution algorithm in line with the IEEE voltage regulatory standards. All algorithms proved to be 
good load flow solvers with distinct levels of precision and speed. While PSO and SMO produced the best and worse results for accuracy with 
MAPE values of 3.11% and 36.62%, ACO and PSO produced the best and worse results for convergence (computational speed) after 65 and 530 
average number of iterations. Since accuracy supersedes speed from scientific considerations, PSO is the overall winner and should be cascaded 
with ACO for an automated hybrid swarm intelligence load flow model in future studies. Future research should consider hybridizing ACO and 
PSO for a more computationally efficient solution model. 
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1. INTRODUCTION 

Power flow studies (PFS) are a crucial component of power 
system analysis that have attracted a lot of interest for many 
years. Analysis of voltage stability, regulation, and the 
dependability of the power system all need it. especially in the 
case of a transmission or distribution system fault in the 
specified power network. In its most basic form, load flow 
analysis is figuring out or solving the power network in cases 
where the bus voltages, angles, or power flows (real and 
reactive powers) are unknown or assumed to be unknown. 

Ahiakwo et al. [1] In order to construct a power system and 
extend an existing power system to meet rising load demand, 
load flow solutions provide the load nodal voltages, phase 
angles, power injection at all buses, and power flows across 
interconnecting power channels. As usual, these kinds of 
solutions have been looked at in the network (static) domain 
using well-known analytical methods like Newton-Raphson, 
Gauss-Seidel, and fast-decoupled methods of solutions. Power 
flow analysis turns into an optimization issue when the aim is 
to maintain a power balance by decreasing the discrepancy 
between actual and reactive power [2]. 

However, when there is heavy loading, the system's high R/X 
ratio and a singularity in the Jacobian matrix could make it hard 
for the solution found using a standard method, like Newton-
Raphson [3]. Therefore, to get around the problems with the old 
Newton-Raphson (NR), Gauss Siedel (GS), Fast Decouple, and 
other non-linear solution methods, many researchers have come 
up with different artificial intelligence (AI) designs that work 
better without sacrificing accuracy. 

In this study, we will focus on AI-based evolutionary 
techniques that are part of swarm intelligence. The goal is to 
use a statistical tool for a comparative analysis to find out how 
significant the proposed methods are at different levels of 
confidence. The power system under investigation is the 
Nigerian power grid, with a primary focus on the 330 kV 
transmission network. An evolutionary algorithm (EA) and four 
swarm intelligent (SI) optimizers will be used to diagnose the 
power system under study. The goal is to find out what the 
current state of the Nigerian grid is by looking at bus voltage 
magnitudes, angles, real power, reactive power, and real and 
reactive power losses. 
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The performance of the traditional load flow methods and GS 
was evaluated in [4], and NR performed better compared to the 
GS solution method, especially as bus and network complexity 
increased. Ghiasi  did a study to compare the load flow on 
Tehran Metro Line 2 Newton Raphson, fast decoupling (FD), 
and accelerated Gauss Siedel (AGS) from ETAP 12 in order to 
find out how well the proposed method works. The results 
obtained show that NR is superior in terms of computational 
speed, while accelerated Guass Siedel performs best in terms of 
accuracy with an acceleration factor of 1.45 [5]. This researcher 
recommended that future researchers develop more 
sophisticated power flow algorithms. 

Araujo et al. [6] conducted a comparative study between the 
Newton-Raphson-based method and the backward sweep 
method for tide studies. These two of his methods were 
compared in terms of changes in X/R ratio, load ramps up to the 
convergence limit, impact on the load model, and impact on 
voltage regulator modeling. Both methods were tested on 34- 
and 134-bus systems, and the results showed that the Newton-
Raphson-based model converged strongly and increased the 
number of iterations minimally. In contrast, the backward-
forward sweep (BFS) led to a significant increase in the number 
of iterations. It increases the number of iterations and 
computation time. The NR-based method showed better 
computational quality in handling voltage regulators with a 
shorter computational time. Nevertheless, the BFS performed 
better than the NR-based model at high loads. Considering 
network complexity and size, NR provided a better solution 
than solving highly meshed networks. 

Djalal et al. [7] in the presence of renewable power plants in the 
Sulselrabar system, NR was deployed on the ETAP premise for 
power flow studies and power system analysis to solve the 
lingering power issues in the region. Zdiri et al. [8] surveyed to 
find solutions to the radial distribution networks' wide range of 
resistance and reactance ratios-related bottlenecks with 
traditional NR and GS methods. The authors deployed an AI-
based iterative method for power flow analysis and impact 
assessment of a photovoltaic system in a radial grid. 

Tostado-veliz et al. [9] proposed and implemented a new 
Runge-Kutta method for tide studies. The explicit Heun method 
and the embedded Heun-Euler method that were suggested 
were used, and the simulation results that were looked at 
showed that they were robust and converged quickly. In their 
paper, they recommended that future work be directed toward 
verifying their claims by comparing the effectiveness of the 
proposed method with other optimal power flow algorithms. 
Guevara et al. [10] modeled a microgrid and performed a power 
flow analysis with ETAP to determine the system state. Power 
flows were run on a microgrid modeled using adaptive NR, and 
the results were compared with real-time figures. 

Rulivanta et al. [11] explored capacitor placement as a tool to 
control voltage profiles and reduce power losses in ETAP using 
one of the traditional load flow solver methods to determine the 
existing and improved conditions of the distribution network. 

Also, Hussain et al. [12] explored power flow analysis in the 
smart grid domain as an alternative to conventional power 
grids. Abirami and Ravi [13] looked at load flow in a 10-bus 
loop distribution network with and without automatic voltage 
regulators (AVRs) and power system stabilizers (PSS) to 
determine voltage stability. Hussain et al. [14] in an attempt to 
improve the voltage profile and reliability of a 132/11 kV 
substation power system, authors used one of ETAP's load flow 
solvers and evaluated the performance of the system with and 
without capacitors. 

Hiwarkar et al. [15] used the IEEE 14 bus network as a test case 
to test the effectiveness of the Newton Raphson (NR) method 
to relax the Guass Siedel (GS) limitation. All algorithms 
modeled and evaluated in MATLAB confirmed the success of 
NR and GS in large-scale systems. Chowdhury et al. [16] used 
ETAP load flow analysis software's adaptive NR to redesign a 
2500 kVA, 11/0.4 kV substation. The goal was to make the 
voltage profile and power flow in the network better. 

Sharma et al. [17] performed a power flow analysis in a static 
radial distribution network using graphic theory. The results 
obtained after testing on two different static, radially distributed 
networks showed faster computation with minimal complexity. 
Egoigwe et al.  [18] as part of their research on improving 
power flow control using phase-shifting transformers, to 
determine the state of his IEEE 5 bus network before and after 
the improvement, they gave a power flow study in a MATLAB 
environment to NR. Hawas et al. [19] simulated and analyzed 
distributed photovoltaic systems with DigSILENT.  

Samuel et al. [20] conducted a study using his 330-kV power 
grid in Nigeria with IEEE 14 and 28 buses as a test case. In their 
study, an artificial neural network (ANN) was used for tide 
studies, and the results were validated using conventional NR 
techniques. The performance is efficient with minimal error 
compared to the results obtained with NR. Remha et al. [21] 
employed the weight sum method-based bat algorithm (BA) to 
handle multi-objective optimization issues. The suggested 
method may optimize the voltage stability index and reduce 
total active power loss, according to test findings on common 
IEEE 12-bus, 33-bus, 69-bus, and 85-bus power feeds. 

To find the stress-stable loading range, Dong et al. [22] 
suggested using a better continuous power flow (CPF) model 
connected through coordinate transformation with a particle 
swarm optimization (PSO) method based on evolutionary 
mechanisms. In order to attain high performance, parallel 
processing is also employed in programming. The suggested 
approach may provide values for the load margin problem with 
excellent accuracy and reliability, according to tests on an IEEE 
14 bus test system. An artificial neural network with a dynamic 
radial basis function was presented in [23]. The findings show 
that both radial and poorly-conditioned networks with high R/X 
ratio values may be successfully applied using the suggested 
strategy. Additionally, using it to test a variety of power and 
distribution systems and comparing the results with those of 
other load flow techniques helped to confirm this method's 
dependability, accuracy, robustness, and efficiency. 
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Sa’ed et al. [24] proposed and implemented analytical tools for 
optimal sizing, mapping, and dissemination of distribution 
generation (DG) using 12, 33, and 69 buses as test cases. The 
results obtained were judged satisfactory in a validation report 
using the improved analysis (IA) and PSO methods. Sur et al. 
[25] used a modified set theory-centric approach to the analysis 
of unbalanced tidal currents. The proposed method has been 
tested using standard 10-bus, IEEE 13 and 123 three-phase 
single-ended radial networks, and IEEE 28-bus balanced radial 
systems. The performance of the algorithms used showed 
superior computational speed and convergence compared to 
traditional BFS and BIS. 

Artale et al. [26] proposed a virtual tool for tide research in 
microgrid systems. The made-up algorithm is based on a 
reverse forward sweep load flow analysis method and was 
proven to work by measuring voltage and current at the start of 
a medium voltage (MV) injection. To improve computational 
efficiency by identifying and eliminating irrelevant iterative 
loops, Verma and Sarkar [27] proposed a forward-backward 
sweep for distribution network power flow analysis by 
integrating distributed generation and transformers. 

Veerasamy et al. [28] developed a generalized Hopfield neural 
network (HNN) for power flow analysis in a MATLAB 
environment. The proposed algorithm was tested using 3-bus 
and 5-bus networks, and the results after evaluation were 
judged to be superior to conventional NR in terms of 
computation time and accuracy.  

Abdullah et al. [29] In their work, they describe four 
optimization algorithms inspired by nature, namely the genetic 
algorithm (GA), differential evolution (DE), flower pollination 
algorithm (FPA), locust optimization algorithm (GOA), and 
cascaded imperial competition algorithm (ICA). To achieve the 
goal of achieving the optimal tidal flow solution for the island 
microgrid through statistical evaluation by SPSS software, we 
used about four hybrid algorithms and performed F- and T-tests 
to select the most important solution algorithm. The 
imperialistic competitive differential extension works better 
with fewer iterations and faster computation times, as shown by 
the test results for the 6-bus and IEEE 37-bus. 

Fikri et al. [30] compared the results of deterministic methods 
and artificial intelligence-based neural networks for load flow 
calculation. The results obtained after the simulation showed a 
higher accuracy of NR compared to GS and ANN. ANN 
outperformed GS and NR in terms of computational speed. 
Ahiakwo et al. [1] used artificial swarm intelligence technology 
for honeybee colonies developed by Karaboga [31] to provide 
an optimized load current solution for the Zone 4 distribution 
network of Port Harcourt Electricity Distribution Company 
(PHEDC)  in the Port Harcourt section of his 132-kV 
transmission network in Nigeria, Jagun et al. [32] employed a 
similar strategy. 

Huynh et al. [33] proposed and implemented a probabilistic 
approach for power flow studies in IEEE 118 bus networks. The 
hybrid solution used in this study combined principal 

component analysis and differential expansion (DE), and the 
results were compared with Monte Carlo simulations. Alanazi 
et al. [34] proposed a new adaptive Gaussian taught-learning-
based optimization method (AGTLPO) for solving non-
convexity-related power flow problems. Twelve different 
scenarios were created from three IEEE standard 30, 57, and 
118 test bus systems. The results obtained with the proposed 
method proved to be more efficient than the usual TLPO 
algorithm in all 12 scenarios. 

Khunkitti et al. [35] In their research, they proposed the Multi-
Objective Marine Predator Algorithm (MaMPA) as a solution 
for solving single-, multiple-, and multi-objective optimal 
power flow problems. In their study, they defined multi-
objectives as two to three research objectives, and multi-
objectives as three or more research objectives. Objectives to 
consider include cost, emissions, voltage stability index, 
transmission losses, and more. The algorithms were tested on 
IEEE 30 and 118 test bus systems to see how well they worked. 
Compared to the algorithms in the review, they did the best on 
single, multiple, and multiple target problems. 

Previously, Khunkitti et al.  [36] surveyed optimal power flow 
studies. In their research, they combined the advantages of two 
swarm intelligence techniques to arrive at an optimal solution 
to the flow problem. To get the best power flow over IEEE 30 
and 57 bus networks, the Dragon Fly algorithm (DA) and 
particle swarm optimization (PSO) were put together to make a 
hybrid solution. Test results after the successful application of 
the proposed hybrid solution yielded higher accuracy with 
longer computation time compared to standalone attributes of 
DA and PSO. 

Taher et al. [37] considered an improved Moth Flame 
Optimization (IMFO) algorithm as a possible solution to the 
optimal power flow problem. The IMFO algorithm is inspired 
by mimicking the motion of moths toward the moon and has 
been implemented in single and multi-target power flow 
solutions using 30, 57, and 118 test bus systems. 

The results obtained after simulation confirm that IMFO is a 
robust and efficient power flow-solving algorithm. EMFO is 
better than other standalone power flow algorithms they looked 
at in their study, as shown by the fact that it converges quickly.  
Riaz et al. [38] used the Hybrid Particle Swarm Gray Wolf 
Optimizer (HPS-GWO) algorithm for optimal power flow 
through the integration of renewable energy sources. The 
algorithm was tested on a modified IEEE 30 bus system with 
the goal of improving the convergence rate, minimizing 
generation costs and emissions, and optimizing the power flow. 
Simulation results highlight the success of HPS-GWO in all 
three goals compared to the separate performances of the PSO 
and GWO algorithms. Nusair and Alhmoud [39] developed and 
implemented a balanced optimization algorithm to optimize 
energy flow with the integration of renewable energy sources. 
The test results of the simulation report show the superiority of 
the proposed algorithm compared to other independent 
solutions. 
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Calasan et al. [40] in their study found an optimized current 
solution through the application of the CONOPT solver in the 
General Algebraic Modeling System (GAMS) software. 
Conventional and improved IEEE 30 bus systems are used to 
evaluate the test performance, and the results show that the 
proposed algorithms are optimally effective in solving current 
problems, minimizing losses. transmission loss and improve the 
profile and stability index. Nadimi-Shahraki et al. [41] used 
IEEE standard 14, 30, 39, 57, and 118 test bus systems to do 
single- and multi-objective optimal power flow analysis on 
standard 14, 30, 39, 57, and 118 test bus systems. hybrid moth 
flame optimization algorithm (WMFOA) of the algorithm. The 
performance results of the twin algorithm and some hybrid and 
independent methods confirm the superiority of the proposed 
algorithm. The combination of the two algorithms solved the 
problem of early convergence, leading to a high-quality 
solution. Maru and Padma [42] evaluated the performance of 
three current analysis algorithms with and without a 
STATCOM device. Teaching-learning-based optimization 
(TLBO) and the Jaya algorithm were used to validate the power 
of the proposed multi-population-based variable Jaya algorithm 
(MPMJ). The proposed algorithm has good and impressive 
computational performance, outperforming the TLBO and Jaya 
algorithms after simulation. Moreover, the algorithm provides 
a fast convergence solution and optimal power flow. 

Sayed et al. [43] show how well the Moth Swarm Algorithm 
(MSA) works by using it on the IEEE 30 bus network to look 
at current, lower load, and find the best way to assign generated 
devices. by Thyristor Controlled Series Capacitors (TCSC). 
Validate the robustness of the algorithm based on comparison 
with other optimization algorithms such as Gray Wolf 
Optimization (GWO), Whale Optimization (WO), Particle 
Swarm Optimization (PSO), teach-and-learn based 
optimization (TLBO), and Butterfly Flame Optimizer (MFO). 

 Nusair et al. [44] used four nature-inspired automatic 
optimization algorithms for power flow resolution and FACT 
device allocation. Slime Mold Algorithm (SMA), Marine 
Predator Algorithm (MPA), Artificial Ecosystem-Based 
Optimization (AEO), and Jellyfish Search (JS) were used to 
obtain the solution energy throughput method using the IEEE 
30 bus test system. The results obtained by comparing the 
proposed methods with particle swarm optimization (PSO) 
gave optimal results. The value of the voltage drops obtained 
with the AEO will be at least 27% of the value obtained with 
the PSO. Sallam et al. [45] conducted a study to evaluate the 
computing power of a modified version of the Differential 
Evolution (DE) algorithm called the Multi-Operator 
Differential Evolution algorithm. (MODE). This algorithm has 
been tested using IEEE 30 and 118 bus systems to support 
single-target and multi-target current problems. The 
comparative results claimed by the authors place the proposed 
algorithm ahead of its contemporaries due to the degree of 
optimization results produced in the presence of renewable 
energy sources. 

Abdi et al. [46] looked at how well four hybrid metadata 
algorithms solved the problems of finding the best power flow 

and reactive power distribution in the network. IEEE 30 and 57 
buses. Differential Evolution with Orthogonal Interference 
(OECD), Hybrid Gray Wolf Particle Swarm Optimization 
(HGWPSO), the Cosine Sine Algorithm (SCA), and the Hybrid 
PSO and GA (HPSO-GA) are the four algorithms that were 
looked at in this study. Based on simulation results, SCA is 
computationally inefficient for large and complex networks, 
while efficient and accurate hybrid methods are based on 
benchmark reports. 

Muppidi et al. [47] presented the effectiveness of Fast Voltage 
Stability Index optimization techniques and the Gray Wolf 
Algorithm (GWA) to improve current solutions through cost 
optimization. fuel cost, and line load capacity. The test of the 
proposed algorithm by simulation on the IEEE 30 bus network 
is performed in a MATLAB environment.  

Saddique et al. [48] conducted a comparative analysis of four 
meta-methods based on evolution to achieve optimal power 
current and optimal reactive power distribution. IEEE 14, 30, 
and 57 bus networks were used as case studies to test the 
proposed algorithms. The algorithms considered by the authors 
are the sine-cosine algorithm (SCA), differential evolution 
(DE), particle swarm optimization (PSO), and whale 
optimization (WO). The simulation results on MATLAB show 
that the performance of SCA is superior to that of other 
algorithms in all scenarios. 

Abdo et al. [49] implemented a modified gray wolf optimizer 
(GWO) called gray wolf optimizer, developed to solve the 
problem of nonlinear currents. Using a 30-bus network, the 
proposed algorithm was implemented and compared with other 
metadata algorithms, especially GWO, to evaluate the 
performance and appearance of the optimized current solution. 

Layth et al. [50] considered the need to apply an improved 
model of the differential algorithm for optimal energy solutions. 
In their study, an improved Differential Evolution (IDE) 
algorithm was developed and tested on an IEEE 30 bus network 
to evaluate its performance. The investigative report derived 
from the 1EEE 30 bus simulation using the developed algorithm 
shows high convergence characteristics compared with other 
algorithms considered in the literature. 

Pandya and Jariwala [51] solved optimal current problems in 
hybrid power systems using Weibull probability distribution 
and butterfly flame optimization (MFO). The IEEE 30 bus 
network, which is a combination of traditional power plants and 
renewable energy sources, is used as a case study for algorithm 
simulation and performance evaluation. 

Mezhoud et al. [52] proposed and implemented a wind turbine 
optimization algorithm (WDO) to solve optimal current 
problems. The proposed algorithm, compared with other 
optimization algorithms in this study, is effective with high 
convergence and reliability. The validation report was 
generated using IEEE 30 and 57 bus networks as case studies. 
The fractional order particle swarm optimization (FO-PSO) 
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method was suggested by Khan et al. [53] as the best way to 
coordinate the current and reactive power. Standard IEEE 30 
and 57 buses were used as test cases to see how well single-
target and multi-objective FO-PSO algorithms worked. The 
results reported by the authors demonstrate the effectiveness of 
FIFO-PSO in providing a solution to the optimal reactive power 
distribution problem. 

Also, Jamal et al. [54] implemented a nature-inspired meta-
empirical algorithm called Gray Wolf Optimization (GWO) as 
a solution to power distribution problems related to reactance 
and optimal current. In addition, using a 30-bus test system as a 
case study, the proposed algorithm was tested for performance 
analysis and evaluation. The results, as inferred from the 
simulation scenarios, confirm the robustness and efficiency of 
the GWO algorithm. 

Shaheen et al. [55] By solving the nonlinear optimal current 
problem with emission, we proposed a modified crow search 
optimization (MCSO) algorithm. This modification is a 
combination of the crow search optimizer (CSO) and the new 
bat algorithm (NBA) to improve current solutions for one or 
more targets. IEEE 30 bus, I18 bus, and West Delta grid were 
used to test the performance of the algorithm, and the results 
were very promising and confirmed the effectiveness of MCS.  

Sarhan et al. [56] have implemented an improved version of 
teaching-learning-based optimization (TLBO) for single- and 
multi-objective optimal current problems.  

Nadimi-Shahraki et al. [57] used a combination of super-
experience combining the efficient whale optimization 
algorithm (EWOA) and particle swarm optimization (PSO) to 
solve the flow problems. electricity. The EWOA-PSO super 
experience has been applied to solve current problems in small, 
medium, and large power system networks contained in the 
IEEE standard library. The analytical results of the simulation 
show the success of the hybrid algorithm in providing solutions 
to functional problems with one or more objectives. 

Jumani et al. [58] provided a solution to current problems by 
implementing an AI-based optimizer called the Grasshopper 

Optimization Algorithm (GOA). GOA has been used in the 
grid-tied microgrid system to optimize the current controller, 
and the results obtained using the proposed algorithm are 
consistent with the PSO results. 

Attia et al.  [59] to propose the optimal power flow solution, 
proposed using a modified sine cosine algorithm (MSCA). The 
result of applying the proposed method to IEEE standard and 
medium-bus systems corresponds to the solutions of other 
algorithms in the document. MSCA is said to be simple and 
powerful to solve optimal power flow (OPFP) problems with 
high computational speed compared to SCA. 

Sarhan et al. [60] suggested a new way to look at the economic 
and technical problems that arise when water flows are changed, 
which they called perturbation-based optimization (TOWBO). 
The robustness and efficiency of the algorithm have been tested 
on 30 and 57 buses, considering the convergence speed and 
quality of the solution compared to other optimization 
algorithms included in the literature. Ezeruigbo et al. [61] and 
Abdulkareem et al. [62] misrepresented the 330 kV Nigerian 
grid in their separate research publications in reputable journals. 
In their submission, generators were designed to operate on 330 
kV in the Nigerian grid, which is wrong and misleading. 

In this paper, the efficacy of five standalone evolutionary-
swarm intelligence algorithms will be compared on the basis of 
speed and accuracy for improved power flow study and to 
correctly remodel the 330 kV, 34-bus transmission network. 

II. METHODOLOGY 

Materials used for executing this research are single line 
diagram, transmission line data, MATLAB, ETAP etc. All 
materials used were duly collated in compliance with relevant 
IEEE standards from [61-63] and Transmission Company of 
Nigeria (TCN). The corrected single-line diagram of the 34 bus, 
38 branches, 330kV Nigerian grid network is contained in 
Figure 1, with the replacement of generators with power grids 
rated in  𝑀𝑉𝐴ௌ. 

 

Figure 1: Single Line Diagram of the 34-Bus Section of the Nigerian Grid  [61-63] 
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Methods 
 
Nodal Voltage Analysis 
 
The power grid's input current at bus i is represented as; 
𝐼 = 𝑌ଵ𝑉ଵ +  𝑌ଶ𝑉ଶ + . . + 𝑌 𝑉 = ∑ 𝑌


,ୀଵ 𝑉   (1)                                           

The voltage and admittance will be given as follows, taking 
magnitude and phase angle into account:  
   𝑉 = 𝑉  ∠ 𝛿                                                             (2) 
   𝑌 =  𝑌  ∠ 𝜃                                           (3)  
Substitute equations (2) and (3) into equation (1) 
   𝐼 =  ∑ 𝑌  ∠ 𝜃

,ୀଵ 
𝑉 ∠ 𝛿                            (4) 

𝛿, 𝛿 are the phase angles of buses i and k, and 𝜃  is the angle 
separating buses i and k. 
the current injection at bus i's conjugate will be; 
   𝐼

∗ = ∑ 𝑌  ∠ −𝜃  𝑉  ∠ − 𝛿

,ୀଵ                       (5) 

Apparent power available at bus i will be; 
   𝑆 = 𝑉𝐼

∗ = 𝑃 + 𝑗𝑄                                           (6) 
Substitute equation (5) into equation (6), considering the 
magnitude and angle of 𝑉  
we have; 
  𝑃 + 𝑗𝑄 = 𝑉  ∠ 𝛿 ∑ 𝑌 ∠ − 𝜃  𝑉  ∠ −𝛿


,ୀଵ    (7) 

Rearranging equation (7) gives; 
   𝑃 + 𝑗𝑄 = ∑ 𝑌𝑉𝑉  ∠ (−𝜃 + 𝛿 − 𝛿)

,ୀଵ    (8) 
But, 
   𝛿 = 𝛿 − 𝛿                    (9) 
   −𝜃 = 𝜃                    (10) 
Substitute the relations in equations (9) and (10) into equation 
(8) 
 𝑃 + 𝑗𝑄 = ∑ 𝑌𝑉𝑉  ∠ (𝜃 + 𝛿)

,ୀଵ         (11) 
From the equation (11), the active real and imaginary power 
will be; 
   𝑃 = ∑ 𝑌𝑉𝑉cos (𝜃 + 𝛿)

,ୀଵ         (12) 
   𝑄 = ∑ 𝑌𝑉𝑉sin (𝜃 + 𝛿)

,ୀଵ          (13)  
From equations (12) and (13) the mismatch power equation is 
deduced as contained in equations (14) and (15). 
    ∆𝑃 = ห𝑃

௦
− 𝑃

ห                (14) 
where,  
𝑃

௦= the actual active power at bus i 
𝑃

= the predicted active power at bus i 
Similarly, the reactive power mismatch may be expressed as: 
       ∆𝑄 = ห𝑄

௦
− 𝑄

ห             (15) 
where,  
𝑄

௦= the specified reactive bus powers at power exchange 
sequence i, and 
𝑄

௦= the computed reactive bus powers at power  
The net power balance is then expressed as the sum over all bus 
power sequence exchanges as: 
    ∆𝑃௧ = ∑ ∆𝑃

ଶ
               (16) 

and, 
   ∆𝑄௧ = ∑ ∆𝑄

ଶ
             (17) 

Optimization in this research is to minimize voltage drop and 
power loss using the objective function expressed in equation 
18 as a product of equations 16 and 17. 
𝐹.  ௧௩ = ඥ  ∆𝑃௧ + ∆𝑄௧     (18) 
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Figure 2:  Procedural Framework of Evolutionary 
Algorithms (EA) [64] 
 
 Swarm Intelligence Optimizers (SIO) 
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Figure 3:  Procedural Framework of Swarm Intelligence 
Algorithm [65] 
 
Mean Absolute Percentage Error (MAPE) 
 
As a means of validation, MAPE is used for confirmation of 
results using the voltage magnitude result as reference. 
Mathematically, the statistical error or accuracy measurement 
tool can be modified to accommodate power flow parameters 
as; 



COVENANT JOURNAL OF ENGINEERING TECHNOLOGY (CJET), VOL. 8, NO.1, JUNE 2024; DOI: XXX XXXX XXX 

 

𝑀𝐴𝑃𝐸 = logଵ 10
భ

ಿ 
|ಲି|

ಲ

ே

ୀଵ
× 100 (19) 

Where; 
𝑁  is the total number of buses or busbars  
𝑉 is the actual voltage magnitude at each bus in pu 
𝑉 is the calculated or computed voltage magnitude at each bus 
in pu 

III. RESULTS AND DISCUSSION 

Simulation results emanating from the 34-bus, 38-branch 
section of the Nigerian 330kV power grid are presented and 
discussed in this section. All results presented for the various 
load flow parameters for the five swarm and evolutionary-
based algorithms are done using histograms and graphs. All 
load flow solution algorithms were simulated in incremental 
steps of 5, starting from 100 to 1000 iterations for effective 
comparison. 
 

 
Figure 4: Best Cost (Fitness) of Algorithms in 100 Iterations 
 

 
Figure 5: Best Cost (Fitness) of Algorithms in 500 Iterations 
 

 
Figure 6: Best Cost (Fitness) of Algorithms in 1000 
Iterations 
 
From the results in figures 4, 5, and 6, the best cost estimate, 
which can be translated to the minimum cost or minimum 
power mismatch between the real and reactive power, is 
produced by PSO in all test cases. For all three sets of 
iterations, PSO and SMO were consistent in their positions, 
with PSO coming out on top and SMO maintaining the least 
position. The results produced by PSO were recorded as 
124.39, 3.72, and 11.80 kVA for 100, 500, and 1000 iterations 
as best, while results produced by SMO in similar conditions 
were recorded as 5965.95, 5490.00 and 4779.29 kVA as worse. 
 

7
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Figure 7: Algorithm Convergence Index for Three Test 
Cases 

 

In Figure 7, for 100 iterations, SMO converged after 25 
iterations followed by ACO, BBO, ABCO and PSO with the 
following number of iterations; 64, 73, 93 and 99. For 500 
iterations, ACO converged after 69 iterations followed by 
BBO, SMO, ABCO and PSO with the following number of 
iterations; 99,103, 402 and 494. Finally, for 1000 iterations, 
ACO maintained its lead with an early convergence after 63 
iterations followed by BBO, SMO, ABCO and PSO with the 
following number of iterations; 124, 338, 837 and 996. 

Summarily, from the convergence result in all three scenarios, 
ACO produced the best result twice making it computationally 
faster than the other algorithms. The other algorithms queued 
behind ACO repeating their positions in test case 2 (500 
iterations) and 3 (1000 iterations). 

4.1 Validation 
 
Table 3: MAPE Result from Bus Voltage Magnitude 
Evaluation 

Iter. BBO 
(%) 

PSO 
(%) 

SMO 
(%) 

ABCO 
(%) 

ACO 
(%) 

100 24.11 10.58 29.97 24.95 18.07 
500 22.27 3.11 36.62 16.87 21.67 
1000 24.54 3.12 26.05 15.21 24.39 

Based on the simulation results shown in Table 3 for 100 
iterations, PSO came out on top with the least mean absolute 
percentage error (power mismatch) value of 10.58%. ACO, 
BBO, ABCO, and SMO came in second through fourth with 
the following MAPE values: 18.07%, 24.11%, 24.95%, and 
29.97%, respectively. In test case two, for a maximum iteration 
of 500, PSO still maintained its lead in the top spot with a better 
MAPE value compared to the former produced under 100 
iterations. In this test case, the performance of three out of five 
algorithms improved. 

The result of the algorithms based on the performance or 
credibility of the solution are arranged in order of relevance 
from first to last as PSO, ABCO, ACO, BBO, and SMO with 
the following MAPE values; 3.11%, 16.87%, 21.67%, 22.27%, 
and 36.62% respectively. For 1000 iterations, two out of the 
five algorithms proved better in performance compared to the 
results obtained in the last test scenario. From the data in Table 
3, PSO and SMO maintained their top and last spots with 
MAPE values of 3.12% and 26.05% respectively. 

Summarily, the best and worst MAPE values for BBO were 
derived from 500 and 1000 iterations, while PSO and ABCO 
produced their best and worst results at 500 and 1000 iterations. 
SMO’s best and worst result was produced in 1000 and 500 
iterations, while ACO produced its best and worst in 100 and 
1000 iterations. 

From the results of success and failures in the last paragraph, 
the best test case for all algorithms should be pegged at 500 
iterations as its probability of producing a worse result is 1/5 
compared to 100 and 1000 iterative test cases having 
probabilities of 2/5 respectively. With PSO and SMO being the 
overall winner and loser in all three test cases, these positions 
remained unchanged as the best test case result is presented 
graphically in Figure 8. 

 

Figure 8: MAPE Result for Best Test Case (500 Iteration) 
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For convergence, the computational speed of the algorithms is 
evaluated by taking the mean result from the three test cases. 
The algorithm with the least and highest mean value will be 
considered the quickest and slowest algorithm, as contained in 
Figure 9. From the chart in Figure 9, considering an average 
number of iterations as a tool for performance validation, ACO 
converged earliest with the least average number of iterations, 
followed by BBO, SMO, ABCO, and PSO. 

 

Figure 9:     Algorithm Convergence Report for 
Performance Validation 

IV. CONCLUSION 

Five evolutionary-swarm intelligence algorithms are being 
used to diagnose the 34-bus, 38-branch, 330kV Nigerian 
transmission grid. The goal is to find the best algorithm based 
on accuracy and convergence rate (speed). Among the five AI-
based computational metaheuristics applied to solve the non-
linear power flow equation are BBO, PSO, SMO, ABCO, and 
ACO. Pre- and post-validation results after simulation using 
three test case iterative (100, 500, and 1000) scenarios 
identified PSO and ACO as the best-performed algorithms, 
with the former being the best in accuracy and the latter being 
the best in speed. On the contrary, analytical and statistical 
results spotted SMO and PSO as the worse-performed 
algorithms in terms of accuracy and speed. Though all 
algorithms provided good load flow solutions, the accuracy of 
the PSO, as validated by the MAPE value, is enormous and 
incomparable with the speed offered by ACO; hence, the PSO 
is the overall winner amongst the five algorithms. 
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