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Abstract: This paper explores an intelligent classification of different 

materials from their sound properties irrespective of shape, texture or 

size. This is towards the building of smart devices particularly useful in 

waste sorting and recycling.  The selected materials are of three broad 

categories namely metals, glass and plastic. Pre-processing involves 

filtering noise from the captured sound data, application of principal 

component analysis (PCA) was carried on extracted frequency and 

bandwidth feature vectors with the aim of extracting the characteristic 

properties that contribute the most to variance in order to improve 

classification accuracy of the training samples. Some common classifiers 

were tested with the data for accuracy of classification. These include 

KNN, Random Forest, Adaboost, SVM, Neural Network. KNN gave the 

best classification accuracy of 96.8%, while the Support Vector Machine 

(SVM) gave the least performance. By including the band width data for 

the three materials, it was observed that better identification of materials 

was achieved.   

Keywords: waste sorting; sound properties; features engineering; 

bandwidth; KNN; Neural Network 
 

1. Introduction  

Our world today is in need of 

smart ways to deal with the ever 

increasing waste.  Recycling of 

waste is one key way to reduce 

depletion of raw materials and 

damage due environmental 

pollution. The process of recycling 

begins with sorting or 

classification of waste and 

manufacturers seek for cost 

effective and efficient ways to 

minimize the time during sorting. 

One of the properties of materials 

is the sound they produce when 

impacted. Sound is ubiquitous in 
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everyday life as objects make 

contact due to human activity. In 

this interaction, the human brain 

has shown the ability to decipher 

types of materials without visual or 

tactile information simply from the 

sounds they produce. For example, 

it is easy to distinguish glassware 

that falls on a hard surface from an 

aluminum plate simply from the 

resulting sound without seeing the 

objects. The primary motivation of 

this work therefore is to explore 

the sound frequency component 

and bandwidth of objects that can 

be used in the sorting of materials 

of interest.  

When an object is struck, the 

energy of impact causes 

deformations to propagate through 

the object, causing its outer 

surfaces to vibrate and emit sound 

waves [1].The resulting sound 

field propagates through and also 

interacts with the environment 

before reaching the inner ear 

where it is sensed. This sound 

carries important information 

about the material composition of 

the object, its shape and size, as 

well as the type and location of 

contact on the object [2].What 

perceptual information is 

characteristic of a material, and 

invariant to object shape? 
 

2. Literature Review 

Natural sound gives valuable 

information about the things we 

cannot see and also contains 

information about the interaction 

between the physical objects that 

generate them. Our auditory sense 

allows us to infer events in the 

world that are often outside range 

of other sensory modalities [3] and 

auditory perception has been 

shown to provide insight to 

everyday listening which consists 

of perceived properties of a 

sound’s source such as car engine, 

footsteps etc., rather than the 

properties of a sound itself (pitch, 

tone, etc.) [4]. Humans can 

identify the physical properties of 

objects from the sounds produce 

unlike our sense of vision which is 

always constrained to a particular 

viewing direction. 

Based on theoretical 

considerations, Wildes and 

Richards [5] suggested the overall 

decay time as a significant cue, 

since it is a direct measure of 

internal friction in a given 

material. However, this is only true 

when a standard anelastic linear 

solid model is assumed.  Lutfi and 

Oh [6]  found that changes in the 

decay time are not easily perceived 

by listeners while changes in the 

fundamental frequency seem to be 

a more salient cue. On the other 

hand, Klatzky, Pai, and Krotov [7]  

showed that decay plays a much 

larger role than pitch in affecting 

judgement. Whereas, material 

classification by subjects is 

qualitative in accordance with 

reported measures of internal 

friction coefficients for these 

material classes, inter-subject 

agreement measures have shown 

that classification is inaccurate for 

high quality factors, thus 

suggesting that the overall decay 

time does not fully account for 

material properties [8,9]. In [10] 

the problem of recovering the 
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material type from impact sounds 

was investigated, and it was 

proposed to use the internal 

friction parameter, which is an 

approximate material property as a 

characteristic signature of the 

material. Giordano et al. [11] 

conducted a study which 

demonstrated that human beings 

can accurately recognize an 

object’s material when listening to 

the sounds generated when an 

object is struck [12]. It could be 

found in the studies of [13-22] and 

25] that wavelet, Mel frequency 

cepstral coefficients (MFCC)  have 

also been explored in feature 

extraction where Support Vector 

Machine (SVM) was used to 

classify the materials sounds with 

different characteristics, but these 

methods  don’t prove to be 

consistent for different training 

samples. 

Materials in general, and solid 

materials in particular generate 

different sounds resulting from a 

physical impact. There seems to be 

an absence of basic research 

reported in the literature where 

sound properties such as 

frequencies and bandwidth are 

used to identify the material types. 

Several methods have been 

investigated to recognize material 

based on decay parameter. 

However, none of the reviewed 

methodologies has computed 

eigen-frequencies and their 

bandwidths of the frequencies. In 

this study, we focus on using 

sound identification to classify 

different material types. 

 

 

 

 

 

 

Figure 1:C1 Condense 

Microphone   Figure 2: Workstation   

 

 

 

 

 

Figur

e 3: Plastic Cover (P1) 

 

Figure 4: Glass 

Bottle (G1) 
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Figure 5: Steel Screw 

(M1) 

Figu

re6:

Exci

ter 

(Har

d Rubber) 

 

 

 

 

  

Figure 7: Metal (M2) 

       

Figur

e 8: 

Metal 

(M2) 

 

 

 

 

        Figure 9: Metal 

(M2)                

 

                      

 

 

   Figure 10: Metal 

(M2)                
           Figure 1-10: Basic equipment and raw sound acquisition from 

                        different materials 

 

3. Material and System Design 

a. Excitation 
To generate sound, a small thick 

rubber material was used as the 

exciter to impact the materials. 

The rubber material essentially 

was used because of its short 

decay and dampness which will 

not contribute much to the sound 

signal. 

b. Sound Signal Capture 

Recordings were captured in a 

sound-treated room using a C1 

condenser microphone all-pass 

setting and a USB 16-bit analog-

to-digital conversion system that 

sampled at a 22 kHz rate. The 

microphone was suspended 

directly over the sound source at 

approximately 1/3 m from the 

sound source.  

Each material was hit at different 

locations to get a random sound 

signal for the identification of each 

material. Afterwards, analysis of 

the sound from the different 

objects was done based on pattern 

analysis for classification in the 

frequency domain. A condenser 

microphone element transduces the 

acoustic energy, and low-pass 

filters cut off the signal at 20 kHz. 

c. Data acquisition and 

processing 

Sound recordings of various 

materials are collected as raw data. 

Features engineering which 

identifies the material type, was 

carried out with Principal 

Component Analysis (PCA) to 

extract key distinctive sound 

features peculiar to a material type. 
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Properties such as formant 

frequency and bandwidth were 

collected as meta-data. The 

PRAAT software was used to set 

sampling frequencies, record and 

save the data. 

d. Pre-processing 

After the recordings were saved. 

The pre-processed data was 

filtered to remove any noise 

present in the signal. High-pass 

Filter at 1 kHz was applied to 

remove the frequencies which 

account for the size of the material. 

The filtered and cleaned sample 

are now passed through an 

autocorrelation function. 

e. Autocorrelation 

The autocorrelation of a 

continuous time signal f(t) is a 

function of the lag time τ, and 

defined as the integral 

            

(1) 

 If f is a sampled signal, with 

sampling period Δt, the 

definition is discretized as 

       

(2) 

where  and  are the 

discrete times at which f is 

defined. 
The autocorrelation is symmetric: 

Rf (-τ) = Rf (τ).                                     

(3) 
 

 f. Feature Extraction and 

Dimension Reduction 

 The aim of feature extraction is to 

convert the sound signals into a 

sequence of feature vectors in 

order to produce a set of 

characteristic features that describe 

the sound signal [26, 27]. The 

process is as shown in Figure 11: 
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                                Fig 11:   Flow Chart of Process. 

 

g. Linear Predictive Coding 

(LPC) 

Linear Predictive Coding (LPC) is 

a method, which was used obtain a 

frequency spectrum. There are 

various advantages for the use of 

LPC and they are: (a) LPC proves 

better approximation coefficient 

spectrum (b) LPC gives shorter 

and efficient calculation time for 

signal parameters and (c) LPC has 

been able to get important 

characteristics of the input signals 

[29]. In LPC, the values of the 

signal can be expressed as a linear 

combination of the preceding 

values.  

That is, if )(is  is the amplitude at 

time i, 

 

  (4)                   

When the input data from the auto-

correlation, this becomes a system 

of linear equations which can be 

solved to determine the values of 

a1 through ap. These values are 

useful to produce a signal which is 

free from noise and clearly 

identifies the formants. 

Here the Linear Predictive Coding 

(LPC) of order 4, was used to 

extract both the formant 

frequencies and Bandwidth.  
 

The feature vectors were 

normalizing by centring their mean 

and scaling by the Standard 

deviation. 
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Principal component Analysis 

(PCA) was performed on the 

scaled feature vectors to extract the 

main data that account for the 

main variance for each material. 

The Extracted data are now passed 

for classification and identification 

as shown in Figure 12. 

 
 

 

 
Figure 12:  Procedure for the classification system 

 

 

 h. Identification Methods 

The identification was done using 

Orange a data mining software. 

The widget used is a graphical user 

interface in which various 

parameters serve as input and 

Output. 
 

Classification Algorithms 
 

i.  kNN 
 

Predict according to the nearest 

training instances. 

The kNN widget uses the kNN 

algorithm that searches for k 

closest training examples in 

feature space and uses their 

average as prediction. 
 

Model parameters. 

Number of neighbours: 3 

Metric: Manhattan 

Weight: Distance 
    

Manhattan Distance  

                         

                       
Data 
 

Data instances: 14055 

Features: PC1, PC2 

Target: Target 

 

ii. Random Forest 
 

Model parameters 
 

Number of trees: 10 

Maximal number of considered 

features: unlimited 

Maximal tree depth: unlimited 

Stop splitting nodes with 

maximum instances: 5 
 

The algorithm 

The random forests algorithm is as 

follows: 
 

1. Draw ntree bootstrap samples 

from the original data. 

2. For each of the bootstrap 

samples, grow an unpruned 

classification or regression tree, 

with the following modification: at 

each node, rather than choosing 

the best split among all predictors, 

randomly sample mtry of the 

predictors and choose the best split 

from among those variables. 

(5) 
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(Bagging can be thought of as the 

special case of random forests 

obtained when mtry = p, the 

number of predictors.) 

3. Predict new data by aggregating 

the predictions of the ntree trees 

(i.e., majority votes for 

classification, average for 

regression). 
 

iii.  AdaBoost  

An ensemble meta-algorithm that 

combines weak learners and adapts 

to the ‘hardness’ of each training 

sample. 

The AdaBoost (short for 

“Adaptive boosting”) widget is a 

machine-learning algorithm, 

formulated by Yoav Freund and 

Robert Schapire. It can be used 

with other learning algorithms to 

boost their performance. It does so 

by tweaking the weak learners. 
 

Model Parameters 

Base estimator: tree 

Number of estimators: 50 

Algorithm (classification):Sammer 

Loss (regression): Linear 
 

iv. Neural Network 

A multi-layer perceptron (MLP) 

algorithm with backpropagation. 

The Neural Network used was the 

sklearn’s Multi-layer Perceptron 

algorithm that can learn non-linear 

models as well as linear. MLP’s 

uses feed forward and recurrent 

networks. Multilayer perceptron 

(MLP) properties include universal 

approximation of continuous 

nonlinear functions and include 

learning with input-output patterns 

and also involve advanced network 

architectures with multiple inputs 

and outputs [27]. 
 

Model parameters 
 

Hidden layers: 100 

Activation: ReLu 

Solver: Adam 

Alpha: 0.0001 

Max iterations; 200 
 

                                   

(6) 

        

(7) 
 

y= true output 

 = predicted output 

w=weight 

x=input 

B=bias 
 

v. Logistic Regression 

Model parameters 

Regularization: Ridge (L2), C=1. 
 

Letting Y be the binary response 

variable, it is assumed that 

)1( YP is possibly dependent 

on x


, a vector of predictor values. 

The goal is to model 

)|1()( xYPxp


 .                      

(8) 

SinceY is binary, modeling 

)(xp


is really modeling. )|( xYE


, 

which is what is done in OLS 

regression, with a numerical 

response.  

If we model )(xp


as a linear 

function of predictor variables, 

e.g., pp xx   ...110 , then 

the fitted model can result in 

estimated probabilities which are 

outside of [0,1]. What tends to 

work better is to assume that  

)...exp(1

)...exp(
)(

110

110

pp

pp

xx

xx
xp












,      (9) 
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where 
pxx ,...,1

may be the 

original set of explanatory 

variables, but the predictors may 

include transformed and 

constructed variables. 
 

vi.  Naïve Bayes 

Naïve Bayes assumes 

 
i.e., that Xi and Xj are 

conditionally independent given Y, 

for all i≠j 

•Train Naïve Bayes (given data for 

X and Y) for each value yk 

estimate   for 

each value xj of each attribute Xi 

estimate 

 

prob that word xj appears in 

position i, given Y=yk  

• Classify (Xnew)    
 

     (10) 

    yk 

               

             (11) 

                      yk 

Additional assumption:  

Probabilities are position 

independent and must sum to 1, so 

there is need to estimate only n-1.  
  

vii. SVM 

Support Vector Machines  map 

inputs  to higher-dimensional 

feature spaces. 

Support vector machine (SVM) is 

a machine learning technique that 

separates the attribute space with a 

hyperplane, thus maximizing the 

margin between the instances of 

different classes or class values. 

The technique often yields 

supreme predictive performance 

results. SVM from the LIBSVM 

package was used. 
 

Model parameters 

SVM type: SVM, C=1.0, ԑ=0.1 

Kernel: Linear 

Numerical tolerance: 0.001 

Iteration limit: 100 
 

For calculating the SVM we see 

that the goal is to correctly classify 

all the data. For mathematical 

calculations we have, 

        [a] If Yi= +1;  

        [b] If Yi= -1;    wxi + b ≤ 1 

        [c] For all i;     yi (wi + b) ≥ 1 

In this equation x is a vector point 

and w is weight and is also a 

vector. So to separate the data [a] 

should always be greater than zero. 

Among all possible hyper planes, 

SVM selects the one where the 

distance of hyper plane is as large 

as possible.  This desired hyper 

plane which maximizes the margin 

should also bisects the lines 

between closest points on convex 

hull of the two datasets. Thus we 

have [a], [b] & [c] 
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                Fig 13: Support Vector Machine. 

 

SVM Classification 

Denote: M  F as a mapping 

from the original M-dimensional 

attribute space to the highly 

dimensional attribute space F. 
 

By solving the following dual 

problem we find  that maximizes

   
 

 
i j

j

T

ijiji

i

i yy )()(
2

1 xx

                                                 (12) 
 

subject to 
iC

y

i

N

i ii



 

,0

,0
1




 

The resulting SVM is of the form 

bybf
N

i

T

iiii

T  
1

)()()()( xxxwx 

                                                 (13) 
 

Experimental Design 

The First Four Formants (Resonant 

frequencies) coded F1, F2, F3, F4 

and bandwidth coded B1, B2, B3, 

B4 was collected, making a total of 

8 feature vectors. 

This 8 feature vectors with 

dimension (15620*8) and 15620 

observations was further reduced 

using the principal component 

analysis (PCA) to 2Dimension 

vector with shape (15607*2). 

Data gotten from Principal 

Component Analysis (PCA) which 

is in 2 dimensions, with the first 

column representing the most 

variance followed by the 2nd 

column for each sound 

vectors(observation). These values 

became the input vector for the 

objects. Since there were three 

classes, the output vector was 

labelled (Metal) for metal, (Glass) 

for glass and (Plastic) for plastic 

which were used as target output 

for classification. 

Cross Validation of 10 folds in 

batch was defined in which to 

partition the data into. Each fold is 

held out for testing. A model for 

each fold is trained using a model 

outside the fold, the model 

performance is tested using data 

inside the fold, which was used to 

calculate the average test error 

over all folds. 
 

Training Samples. 

Glass: 4140 data points.      

    92 

 

http://journals.covenantuniversity.edu.ng/index.php/cjet


Oluwatoyin P. Popoola & \Oluwatobi Y. Bello                                       CJET (2019) 3(2) 83-101 
 

 

URL: http://journals.covenantuniversity.edu.ng/index.php/cjet 

 

Metal: 5280 data points. 

Plastic: 6200 data points. 

In total, 15620 sound observations 

were trained, 26.5% of which were 

glass, 33.8% stainless steel and 

39.7% plastic. 
 

Test Samples. 

Glass: 415 data points.     

Metal: 524 data points. 

Plastic: 622 data points. 

In total, 1561 sound observations 

were collected, 26.59% of which 

were glass, 33.57% stainless steel 

and 39.85% plastic 

 

5. Result and Discussion 
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a. The Long Term Average Spectrum (LTAS) 

In the Figures 17-19 the x axis and y axis represent the Sound Pressure level 

(dB) and Frequency (Hz) respectively. 

 

 
 

 

    94 

 

http://journals.covenantuniversity.edu.ng/index.php/cjet


Oluwatoyin P. Popoola & \Oluwatobi Y. Bello                                       CJET (2019) 3(2) 83-101 
 

 

URL: http://journals.covenantuniversity.edu.ng/index.php/cjet 

 

 
 

Figure 17 to 19: BAND DENSITIES 

 METAL                 GLASS              PLASTICS 

ORDER OF DECREASING DENSITIES 

 

From the Figures 17-19, Plastic to 

metals spectral components have 

progressively longer decay times, 

and progressively decreasing 

bandwidths.  

From the result it was found that 

the bandwidth gave important 

clues to why a stainless steel, 

plastic and glass sounds unique. 

Frequency had a lesser, but 

significant, contribution. 
 

Training Samples 

In Figure 20 the x axis is 

represents the first principal 

component (PC1) and the y axis 

represent the second principal 

component (PC2) 

By visual evaluation, the 

boundaries of separation for the 

different materials is visible 

however it suggests the like hood 

of misclassification for glass 

materials, but there is clear line of 

separation between the metal class 

and plastic class. 
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               Table 1 

            Performance Result for different Classifiers. 

Scores      

Method AUC CA F1 Precision Recall 

kNN 0.987 0.967 0.967 0.967 0.967 

Random 

Forest 

0.990 0.954 0.954 0.954 0.954 

AdaBoost 0.961 0.930 0.929 0.929 0.930 

Neural 

Network 

0.985 0.920 0.919 0.920 0.920 

SVM 0.889 0.773 0.742 0.754 0.773 

 

 
           Table 2 

            Confusion Matrix for Training Samples 

     (Showing number of instances) 

 Predicted     

  Glass Metal Plastic ∑ 

Actual Glass 3773 123 244 4140 

 Metal 53 5226 1 5280 

 Plastic 87 0 6113 6200 

 ∑ 3913 5349 6358 15620 

 

Sampling type: Stratified Shuffle 

split, 10 random samples with 90% 

data. 

Target class: Average over classes. 

From the Result in Table 1, KNN 

has the best Classification 

Accuracy, F1 score, Precision and 

Recall, with SVM having the     

least. 
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Accuracy: The ratio between 

correctly predicted outcomes and 

the sum of all predictions.  

((TP + TN) / (TP + TN + FP + 

FN)) 

Precision: When the model 

predicted positive, was it right? All 

true positives divided by all 

positive predictions. 

(TP / (TP + FP)) 

Recall: How many positives did 

the model identify out of all 

possible positives? True positives 

divided by all actual positives.  

(TP / (TP + FN)) 

F1-score: This is the weighted 

average of precision and recall.  

(2 x recall x precision / (recall + 

precision)) 

The Receiver operating 

characteristic curve, or ROC 

curve, is a graphical plot that 

illustrates the diagnostic ability of 

a binary classifier system as its 

discrimination threshold is varied. 

The ROC curve is created by 

plotting the true positive rate 

against the false positive rate at 

various threshold settings. 
 

From the ROC Curves in Figures 

21-23, it clearly shows the 

discriminative ability of the 

different Classifiers, which is seen 

as the percentage of True Positive 

rate against the False Positive rate. 

          

b. Text Samples 

 

 
 

Figure 24: The Scatter Plot of the Test samples. 
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Figure 21: ROC Curve /Glass as Target) 

Figure 22: ROC Curve /Metal as Target) 
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Figure 23: ROC Curve/Plastic as Target) 

 

6. Conclusion 

In this paper, we investigated the 

performance of   various 

classification approaches on the 

problem of classification of 

materials from their sound 

features. The classification results 

show that KNN has better 

accuracy when compared to the 

other classification algorithms. 

The difference in band densities 

has shown to be a distinguishing 

feature for classifying each 

material type. Plastic has a dense 

and broad band, non- harmonic 

short duration while glass has a 

narrower band and metals have 

even a narrower bandwidth and 

longer duration. 

 The classification results with 

band densities show the potential 

of distinguish glass, metal, and 

plastic objects using emitted sound 

waves. This investigation provides 

insight to the possibility of sorting 

materials into broad categories 

where this is sufficient e.g. for the 

purposes of recycling waste.  

Future work will focus on 

achieving a better representation of 

the frequency and band density 

since different materials have 

different energies in different 

frequency bands. 
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