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Abstract—The process of giving out an assignment to an individual that results to 

delay, or non-performance of the job is from the cause of not evaluating the 

minimum cost of the work and the right person to perform the assignment. 

Assignment problem entails assigning a precise person or thing to an exact task or 

job. The optimal result is to assign one person to one job. The most common method 

to solve assignment problem is the Hungarian method. In this paper, Genetic 

Algorithm is applied to solve assignment problems to attain an optimal solution. The 

“N men – N jobs” issue is the core task issue, where the general expense of tasks is 

limited as a result of allocating a single job to just an individual. In deciphering this 

issue, Genetic Algorithm (GA) and Partially Matched Crossover (PMX) are been 

utilized as an exceptional encoding plan. GA was evaluated alongside the Hungarian 

method and the results clearly showed that it performed better than the Hungarian 

method. 

Keywords/Index Terms—Assignment problem, Branch and Bound Technique, 

Constraints, Genetic Algorithm, Hungarian assignment method. 
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1. Introduction 

Organizations in modern-day businesses 

have a greater need to handle their 

activities efficiently to pull off 
competitive advantages in every part of 

the organization. To attain this, jobs need 

to be assigned to the best-qualified 

personnel.  

 

Successful organization is an engine; the 
work parts are simply unsuccessful if they 

do not fit exactly where they are put. 

Likewise, putting the wrong people in 
mission-critical positions can be 

expensive and counterproductive to 

business performance and organizational 

development. Maintaining and improving 
the efficiency and effectiveness of your 

employees are important to any business' 

growth and success, hence the 
justification for solving the problem of 

assignments (Elsayed et al., 2010). The 

Optimization of jobs provides call 

recording tools, agent assessment, and 
coaching, performance management, 

planning and scheduling, contact 

tracking, and feedback surveys. These 
technologies are implemented in 

applications that allow companies to 

leverage customer interaction data to 
increase efficiency, improve sales efforts, 

and ultimately improve customer 

experience. Workforce optimization 

helps companies to improve the 
efficiency and efficacy of their customer 

interactions by collecting interactions 

across all platforms, extracting lessons, 
and taking decisions that affect business 

outcomes and customer experience. 

(Naveh, et al. 2007). In every 
organization, Human resources seem to 

be the bedrock, as its involvement in 

operations, such as agents in client care, 

clinical delegates in visiting doctors, 

producing laborers, contact focus faculty in 
client cooperation, aircraft group in client 

assistance, explicit heads, and so forth. 

Efficiently controlled employees eventually 
contribute to the organization's efficiency, 

and thus effectiveness. Workforce 

application intends to cover the workload 

with the available resources while respecting 
work constraints, balancing the workload 

among employees, and minimizing dormant 

time. Significant benefits are being provided 
in enhanced workplace management and 

preparation, such as increased efficiencies, 

reduced costs, enhanced customer service, 

and greater employee satisfaction, (Naveh, et 
al. 2007). 

In linear programming, issues of 

assignment are distinct as delegated 
persons are obliged to carry out 

assignments. The assignees, for 

example, could be workers who should 
dole out work tasks. In assigning jobs, 

the major and standard issue is the 

allocation of jobs to individuals. To fit 

the meaning of a task issue, these sorts 
of utilizations should be defined in a way 

that meets the accompanying 

assumptions. 
a. Assigned individuals and quantity of 

tasks are respectively indistinguishable. 

(n indicates such numbers) 
b. One mission assignment to exactly 

one assignee. 

c. One assignee shall complete one 

assignment. 
d. Costs are aligned with assignee i (i= 1, 

2, 2,.,n) executing function j (j= 1, 2,., n). 

e. The goal is to decide how all n tasks 
should be carried out to reduce the total 

cost. 

In this work we applied GA to job 

assignment problem with constraints. In 
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what follows, Section 2 talks about 

some related literature. Section 3 
explains the methods and algorithms 

adapted in this work. Section 4 shows 

the results tested in different case 
scenarios simulated and real 

environments. Section 5 concludes 

the study.  

2. Literature Review 

Garrett et al (2005) showcased the 

Genetic Algorithm (GA) towards 
overcoming the Sailor Assignment 

Problem (SAP) for the United States 

Navy. The SAP is a mind-boggling 
issue of assignment where every one 

of the n sailors must be allotted one 

task from an assortment of m 

employees. 
 

The genetic algorithm adopted for the 

study is been connected to an existing 

algorithm, the Gale-Shapley algorithm, in 
building such assignments and giving 

observational outcomes indicated that the 

GA could create great arrangements with 
huge cost savings In Anwar (2017) the 

Hungarian algorithm was built 

specifically on using a graph in the 

general method. The approach was 
attained by selecting the minimum cost 

(edge) from the cost (edges) and 

eliminating the chosen edge as well as the 
edge-related nodes, then deleting all other 

node-related edges. The edges are the 

outflow of assigning people to jobs, the 

roles and entities are the nodes. A 
Constructive Genetic Algorithm (CGA) 

to the problem of genetic selection was 

presented in (Lorena et al., 2002). 
Compared with a conventional genetic 

algorithm the CGA has several new 

technologies. These include diverse 
population sizes and an opportunity to use 

heuristics. With seniority and task priority 

restrictions (Caron et al., 1999) proposed a 
solution to the work allocation issue where 

seniority requirements allowed the approach 

to be such that no unassigned person can be 
given a job except the same or higher 

seniority appointed individual is unassigned. 

Priority requirements state that the 

compromise must be such that no unassigned 
job can be allocated without a position being 

unassigned with the same or higher priority. 

Bogomolnaia and Moulin (2001) found a 
situation where all actors have specific 

expectations and suggested the method of 

Probabilistic Serial (PS). They describe a 

new notion of output, named ordinal 
performance, and show that the probabilistic 

serial process considers a normally effective 

assignment free from envy. However, their 
algorithm is crucial to the limiting 

expectation of specific expectations. The 

method used by the author was based on a 
reinterpretation of the PS system as an 

iterative algorithm for computing a flow in a 

related network. It was shown that seeking a 

random assignment that is both normally 
effective and envy-free is unlikely for even a 

poor strategy evidence mechanism on the 

maximum choice domain.  
Semih et al., (2008) applied the distribution-

type warehouse assignment question where 

different types of goods were acquired from 
various vendors for storage in the warehouse 

for a specified period and allotment to 

different clients. Their analysis aimed to 

develop a layout of multi-level warehouse 
shelves that reduces the annual cost of 

transportation. Since the original 

mathematical model proved to be NP-hard, a 
Particle Swarm Optimization Algorithm 

(PSO) was developed as a novel heuristic to 

decide the optimal configuration. 

GA has been applied in measuring future 
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progress in economy and market by 

refining the rules-lists constructed for 
fuzzy logic control after the removal of 

inherent redundancy (Alfa et al., 2019 & 

2020). 
A variant of GA with selection and 

evaluation was implemented for a 

timetable scheduling problem by 

replacing crossover and mutation using 
tabu search memory and course 

sandwiching (Abayomi-Alli et al., 2020). 

2.1 Genetic Algorithm (GA) 

is a heuristic, natural evolution-inspired 

search, and optimization strategy 

(McCall, J. 2005). It was first conceived 
by John Holland and later developed by 

numerous researchers. Optimization or 

solution-searching is a heuristic technique 
of GA, at first propelled by the Darwinian 

hypothesis of development by (genetic) 

preference. Theoretical interpretation of 

the evolutionary cycle is used by GA in 
creating an answer to issues. Every GA 

works on artificial chromosomal groups.  

On each population (generation) of 
chromosomes (individual solution) 

generated, three operations are 

performed:  
a) Reproduction: In this process, 

individual strings are been 

matched their fitness functions 

respectively (Total cost 
function is assumed here).  

b) Crossover: This is the 

mechanism of switching the 
two-string material at some 

point(s) with a chance through 

several chromosomes. 
c) Mutation: This is the flipping 

component of the enthusiasm 

inside a chromosome at a 

specific area in an arrangement 
with a low (Sahu & Tapadar, 

2007). 

With a start-up of a chromosome sample 
which is randomly generated, a wellness-

based selection and recombination cycle 

performed by the GA to make the following 
cluster, a replacement/successor group. In the 

cause of recombination, parent chromosomes 

are chosen, and the obtained genetic material 

is recombined towards the build-up of the 
youngster’s chromosome. These will at that 

point move into the public of the 

replacements. A progression of progressive 
ages develops as this cycle is iterated, and the 

absolute strength of the chromosomes will in 

general increase until some stop prerequisite 

is met.  
This selection process guarantees 

compatibility of the system with the 

darwinian survival of the fittest in the natural 
world, by transferring a  

higher portion of the best-suited genes  

to the next generation 
 (Sahu & Tapadar, 2007). 

2.2 Genetic Algorithm Crossover  

Variants 
The Job assignment problem is likewise 

a Constraint Optimization Problem 

(COP) given the task of machines or 
occupations dependent on status, skill 

level, availability, etc. as mentioned in 

the introduction of this study. There are 

several variants of the GA that are 
applied to different COP. Blend Fusion 

(BLX-α), Simulated binary crossover 

(SBX), Simplex Crossover (SPX), 
Parent Centric Crossover (PCX), 

Triangular Crossover (TC), and Partially 

Matched Crossover (PMX) are instances 
of GA variations. These variations 

chiefly contrast in their utilization of 

crossover operators and mutation 

operators. (Elsayed et al., 2010) 
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3.0: Methodology 

The purpose of this study is to apply 
Genetic Algorithm Optimization to 

work assignment question N workers 

on M computers, where N is the 
number of jobs allocated, and M is 

the number of staff. This study will 

use Ikeja Electric Distribution 

company based in Lagos as case 
study, create a mathematical model 

and adopt an objective optimization 

algorithm to obtain optimal job 
assignments. The methodology 

adopted is the bottom-up approach to 

increment development. This kind of 

application commences with an 
architectural program design. 

Bottom-up implementation begins 

with the system's lowest-level 
components. The method of a job 

assignment is represented as a series 

of strings corresponding to each  
 

the base 10 value of the bit representation 

of that row e.g.  

<4 2 1> = <1 0 0, 0 1 0, 0 0 1>; where 
each row is separated by a comma. Each 

permutation of a given string is a valid 

solution therefore, contains the best 
solution. Given this encoding scheme 

generates N! strings where N is the 

number of alleles in a chromosome, it is 
correct to assume that each solution 

corresponds to a character encoding. The 

implementation from bottom-up begins 

with components that use everything else 
but use nothing on its own. Firstly, a 

testbed for each component is built and 

secondly components are grouped into 
subsystems after having been evaluated 

equally when the lowest level 

components have been tested using a 

testbed. The process continues until the 

entire system is fully completed and then 

checked as a whole.  

3.1 Job Assignment Problem 

Given N computers and N people. 

Mathematical representation, with the 
following symbols, can be used to 

describe it: 

i →row number denoting ith man i ε [1, N]  
j →column number denoting jth machine j ε 

[1, N] 

Where [1, N] is an infinite set of natural 
numbers 

C[i][j]→ cost of assigning jth machine to ith 

man 

X[i][j] = 1 if jth machine is assigned to ith 
man = 0 otherwise 

i.e. on the job assignment matrix if jth 

machine is assigned to ith man, the 
element that corresponds to the ith row 

and jth column = 1, else it will = 0. 

The question can be posed as follows: 

 Minimize the total cost function 

 

 Subject to the following constraints: 

 
  

 
 

 
 
This indicates that the ith man for all 

instances of (1..N) (natural numbers), there 

must be a jth machine for all (1…N) on the 

job assignment matrix. 

3.2 Job Genetic Algorithm approach 

1. After encoding the solution strings, the 

“Binary tournament selection” method is 
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1  3 4 2 5 

↕  ↕  

2 1 3 5 4 

FIGURE 1: PMX CROSSOVER 

 

adopted for population crossover 

selection.  
2. In the binary tournament selection, two 

strings are selected and compared 

randomly, the optimal one chosen for 
parenthood is replicated M times. 

Where M is the population size.  

3. Then the Partially Matched Crossover 

(PMX) is employed for crossover, 
which can be better explained by the 

following example. Two strings are 

chosen for crossover <1 3 4 2 5> and 
<2 1 3 5 4>. Arbitrarily, two numbers 

(positions) among 1 and L are created 

where L is the length of the string, here 

L=5. The swath of genetic material 
(alleles between two points on the 

chromosomes) from one string, and 

the corresponding swath from another 
string, between the selected 

boundaries of the chromosome, are 

interchanged such that  
 3 ↔ 1 4 ↔3 2 ↔ 5, which 

implies1↔4 and 2↔5 as shown in 

Figure 1. 

 
 

 

 
 

 

 
  

 On the off chance that 1 in the part 

outside the two-hybrid focuses is 

subbed by 4 and 2 in the segment 
above, 5 will remove the two 

crossover points. Switching the 

alleles outside the selected 
boundaries of the two strings 

ensures the strings produced by the 

PMX crossover are valid. 

 In Figure 2, the PMX crossover 

approach adopted ensures that crossover 

generated strings are valid possible 
combinations of < 1 2 3 4 5 >. 

 

4. After mixing, a population exists that 
contains the parent population and 

children population. The fittest 

individuals are selected from this 

generation for the next iteration.  

 
Two methods could be used for the selection 

process: 

a. A method is devised, which orders 
each individual in this population in 

ascending performance order 

(objective function value), the string 

encoding the lowest total assignment 
expense will have the maximum 

objective function  

benefit. A fixed number of individual 
strings can be picked from this 

population under each group, in 

which each population can be split 
into 4.  For instance, it is assumed 

that the string values are normally 

distributed with a mean value of μ 

and a standard deviation of μ, and 
then the population could be 

classified into four categories: those 

with average values above -μ + 3*π,  
those with average values between μ 

+ 3*μ and μ, those with values 

between μ and μ-3*π, then those with 
values above average. Those below 

average have values 

 below μ — 3*ÿ. In this way the ethnic 

composition is preserved. 
b. One way of choosing the 



Yinka-Banjo et al.  CJICT (2020) 8(2) 1-17  

7  

population is to store the string 

with the best objective 
function value individually in 

an array at each iteration, and 

then equate iteration with the 
best string of the population. 

The strongest string cannot 

avoid this path. The GA has a 

drawback of converging to a 
local equilibrium i.e., a 

premature convergence that 

contributes to a successful but 
not the best solution. The 

solution adopted to minimize 

this weakness is to maximize 

the population size at each 
iteration and to maintain a 

demographic diversity at each 

iteration. 
5. A mutation alternative, 

Inversion, is then 

implemented which selects 
two random spots in a string 

and flips the corresponding 

values at that location. 

 
 

 

3.3 Job Functional Requirement 

 The real essence of a design definition is 

the practical specifications of the 
functionalities of the framework that 

satisfies the requirements specification of 

this project. This is done by going through 

the applications functionality as specified 
in its specification. For each requirement, 

a more generic function had to be 

specified that could implement these 
functionalities. These requirements can 

also specify what the developing system 

should not do. 
1. Valid Dataset 

 This is a user requirement which 

requires that the dataset uploaded to the 

optimizer is compatible with the problem 
set and conforms with the scope of this 

study, which is the activities of staffs in 

the ICT unit at Ikeja Electric Distribution 
Company whose branches are located in 

Lagos. This implies that the dataset would 

contain schedules of possible activities 

executable by these ICT staff, organized 
by time stamps and expected duration of 

executions. 

2. Simulation Manager 
 This system requirement ensures that the 

system simulates the efficiency of a given 

dataset, either optimized or unoptimized. 

Each simulation is timed, allowing the 
tester to benchmark the dataset through 

visual inspection of the animation during 

simulation.  
3. Optimization Visualizer 

This system requirement visualizes on a 

line graph the comparison between 
multiple solution iteration using Key 

Point Indicators (KPIs) such as the fittest 

individual in every generation and 

population size at each iteration (i.e. 
alternated to escape local optima). 

4. Job Assignment Optimization 

This system requirement employs the 
adopted GA algorithm to optimize the 

inputted dataset. This optimizer 

minimizes the objective function of the 
job assignment problem as defined in this 

study constrained by the intrinsic priority 

of a task, skill-level, staff’s performance 

on that job, location from task, and staff’s 
current workload. Figure 3 show as 

explained. 
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Figure 4 shows the activities on how a 

tester of this system interacts with the 
developed system. 

3.4 System Design 

This section introduces system models 
that show with a varying degree of 

abstraction, different perspective of this 

system used to design the developing 
system. 

3.4.1 Context Model 

The design model in Figure 5 is used to 

illustrate device integration with an 
external perspective of the framework and 

its environment. This model helps to 

reflect the system's borders and its setting. 
Such boundaries could be established to 

accommodate technological as well as 

non-technical considerations such as 

social and organizational issues. After the 
boundaries have been ascertained, the 

 

 

 

 
research done will attempt to determine the 
nature of that modelled sense and the 

dependencies the device has on its setting. 
1. Job Assignment Manager manages the 

job assignment list while considering 
other constraints such as seniority 

constraint, staff availability constraint, 

job role constraint, skill-level 
constraint etc. 

2. Job Scheduler converts the 

information uploaded via dataset to 
various job assignments on the job list 

of different ICT staff on the system. 

3. GA Job Scheduling Optimizer 

employs the GA strategy adopted in 
this study to minimize the objective 

function of the job assignment 

problem as defined in this study. It 
operates on the  

FIGURE 3: JOB OPTIMIZATION SYSTEM 

CONTEXT MODEL 
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` uploaded dataset to generate 

an optimal job assignment that 

will be executed by every staff 
of  the ICT unit in the shortest 

time. 

4. Assignable Task List 

Manager enforces the job role 
constraint, ensuring that staff 

in the simulation system only 

undertake jobs that are 
assigned to them. This 

subsystem stores the list of 

assignable jobs as it concerns 

each job role captured on this 
system. 

5. Dataset Uploader/Validator 

enables the system tester 

upload dataset for optimization. 

This system component analyses 
the  

 

uploaded dataset to ascertain its 
validity and its conformity to the 

various job assignment constraints as 

defined in this system such as 

operational hours,   
job assignments based on job roles, 

etc. The uploader formats the contents 

of a dataset to extract assignable jobs, 
jobs to be done, owner of a job, subject 

of a job, object of a job, which is 

stored on database before processing. 

6. Simulation Manager simulates the 
performance of a job assignment, 

optimized or unoptimized. It enables 

the tester to visualize in real-time 
through animations, the pseudo 

execution of operations as defined in 

each job assignment. 
7. Optimization Visualizer shows the 

results of the optimization process as 

adopted in this project. It uses a line 

graph to visualize the performance of 
the adopted algorithm under multiple 

test scenarios. 

3.4 Process Model  
In accordance with the background model, 

the System model in Figure 5 is used to 

describe human and automatic systems in 
which each software program is used. The 

aim of this diagram is to display the actions 

that form a machine process and transfer of 

control from one operation to another. A 
filled circle indicates the start of a process, 

the end of a filled circle inside another Circle. 

Round-cornered rectangles represent 
activities, that is, the specific sub-processes 

that need to be performed. The operation 

diagram can include artifacts to show various 

systems that are used to support different 

FIGURE 5: JOB OPTIMIZATION SYSTEM 

 ACTIVITY MODEL CONTEXT MODEL 
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processes. 

 
4.0 Test Case Scenario 

This project focuses on the power 

distribution sector and the activities of the 
IT department as a service department to 

the other personnels and departments in 

the company scattered across seven 
business units in Lagos State. These units 

are used as test cases for simulation and 

test for efficiency of the genetic algorithm 
in relation to the job assignment problem. 

The algorithm would work on pseudo-

data, built based on the job functions 

performed by each specialist, and 
benchmarked using the following 

parameters: Flexibility, Robustness, 

Optimality, Speed. 
To enable proper analysis of data captured 

despite variability, the optimization 

process is simulated several times and 

recorded. Each run will contain 5 
iterations corresponding to 200, 400, 600, 

800 and 1000 job assignments. Each 

assignment is randomized to create a 
more realistic scenario.  

The Hungarian algorithm and its variants 

are known as the most adopted approach 
for tackling the job assignment problem. 

The Hungarian algorithm is used to 

benchmark the adopted algorithm. 

4.1 Data Dictionary 
This section describes the test dataset for 

the job optimization problem as it 

concerns operations of staff in the IT 
department, as the technical support for 

other departments, maintaining sectors 

operations as it concerns IT infrastructure 
such as networking infrastructure, PCs, 

revolving doors, electronics and building 

electrical infrastructure. Table 1 shows a 

few samples of the job objects, job roles 
and job names as stored on the database 

defined in the analysis and design section of 

this project. Job objects - items around which 
a job is to be performed/object of the job 

execution e.g., network router, mouse, 

keyboard etc. These objects could be attached 
to a defining noun such as person or place 

e.g., Henry’s mouse, Ayo desktop monitor 

etc. 

Job roles – a grouping of staff based on 
department and their specialized. 

Job names – name of each performable job of 

an IT staff of Access bank as captured by the 
system. 

Table 1 represents the core data, not the entire 

data captured on the test dataset, which also 

includes username, branch name, branch 
location, skill-level etc. 

 
TABLE 1 DATA DICTIONARY 

Job Role Job Object Job Name 

Network 

Technician 

Main Hall 

Router, 

Customer 

Service Hall 

Router, Network 

Cable 

Fix the router in the 

customer hall. 

We can’t get internet 

at our office (Audit). 

My computer cannot 

access the network. 

IT 

Technician 

Revolving door, 

AC, Socket, 

faulty wire 

The left revolving 

door at branch A is 

temporarily out of 

service. 

The socket at my 

station is faulty. 

IT Support Internet 

connection, 

Computer 

I can’t login to my 

window’s account. 

My computer is not 

coming on. 

Software 

Support 

CIS App, 

Mobile App 

I can’t login Meter 

reading software. 

I can’t balance my 

sheets for today. 

 
Job names as mentioned above accounts for 

the fact that job assigners on this system are 

not IT savvy (not familiar with IT terms), as 
is the case in many organizations, therefore, 

adopting a natural vocabulary instead of 

technical vocabulary. Job names are 

dynamically bound to the job assigner’s 
location and username, therefore, the system 
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can permit the use of pronouns such as I, 

my, our, us etc., to make the job 
assignment name which makes it more 

natural. 

 
4.2 Sample Input/Output/Results 

Development of a JavaFX 

Application using Scene Builder for 

GUI, allowed the application user 

interface to be developed first. The 

components of the user interface 

determine how each aspect of the 

project object and scope is achieved. 

After the user interface was 

developed using scene builder, then 

different logic for manipulation of 

information within each component 

of the application where 

implemented in their controller 

classes.  

JavaFX is the new object-oriented 

framework for developing Java GUI 

programs. Every JavaFx application 

must extend the abstract 

javafx.application. .Application 

class, which defines the essential 

framework for writing JavaFx 

programs. Each JavaFx application 

must have a static launch method, a 

static main method, start method, a 

scene and a stage. The launch method 

defined in the Application class is 

used to launch stand-alone JavaFX 

applications.  The main method is a 

method defined in the Object class 

which is inherited by every Java 

application. The main is method 

called when a java application is 

executed. The start method also defined 

in the Application class, and must be 

overridden by its concrete subclass.  

A solution was to adopt a framework that 

is capable of seamlessly loading and 

displaying a desired layout container 

from a set of layout containers loaded. It 

copies the root layout container of the  

 

requested Scene to the displaying window. 

This framework uses a hash-function to map 

an identifier as key and the layout container 

as the object. This framework is an imitation 

of the framework developed by a Java 

Evangelist at Oracle, Angela Caicedo.  

Every GUI feature has its own window (a file 

with an extension of.fxml) and controller (a 

file with an extension of.java). FXML is an 

XML extension used to create a markup 

language to manage the layout of a web 

development JavaFx Framework, associated 

with HTML. Controller groups manage user 

activities including events caused by the 

mouse, key events triggered etc..  In the 

corresponding parts the GUI components and 

their controller groups would be described. 

4.2.1 Inputs 

This portion explains the application 
software built for this project and how it 

meets the purpose of the project, in effect the 

core components and inputs gathering 
knowledge through the operator's contact 

with the simulation device. Below is a 

description of GUI Components and their set 
of controllers: DBConnect.java, GA.java, 

HA.java, Jobs.java 

Vertex.Java, WeightedEdge.java, 

Graph.java, Project.Java, DataUpload.fxml 
& DataUploadController.java, 
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SimulationPage.fxml & 

SimulationPage.java 
1. DBConnect.java class is the 

communication module between 

the system and the database.  
2. GA.java class implements the GA 

modeled for the optimization of the 

job assignment problem. This class 

contains a mutation operator 
(inversion), fitness evaluator for 

local and global best, and 

configurable crossover possibility 
to adjust the efficiency of the 

algorithm. 

3. HA.java implements the popularly 

adopted Hungarian Algorithm 
used to benchmark the 

performance of the GA adopted for 

this project. During testing, the 
same values passed to the Genetic 

Algorithm is passed to the 

Hungarian Algorithm to ensure the 
benchmark results are accurate. 

4. Jobs.java class models the single 

core entity of this project. It stores 

other variables that describe it 
properly such as job assigner 

username, job name, job object, 

time of assignment etc. This object 
is instantiated when the test data 

uploaded to database is retrieved. 

This object is randomized for each 
test run to simulate the randomness 

of job assignment in real-life 

scenarios. 

5. Vertex.java class models the java 
object that represents a node on a 

graph. These nodes represent the 

bank branches. The coordinate 
location of each node is 

preconfigured before program 

execution to model the location. 

6. WeightedEdge.java class models 

the rail lines between way stations. 

The weight of each edge represents the 
distance between any two branches 

and distance between stations. it is 

represented on the program as a 
weighted edge with a cost, calculated 

by the system on execution as a 

straight line between two points.  

7. Graph.java class models the branches 
of the bank as a connected unit that 

interoperate, therefore, can have IT 

staff shuttle several branches on job 
assignments. The class models the 

branches as  undirected connected 

graphs of the transportation network 

between branches of the bank. After 
the system has optimized the uploaded 

job assignments, the new scheduling 

and routing algorithm is simulated on 
the graph object and displayed on the 

simulation page.  

8. Project.java class is the main class for 
this project’s application. It contains 

the main method, start method, Stage 

object, scene object and the launch 

method required to execute the 
JavaFX application. In this class all 

layout containers are loaded and the 

display container set.  
9. DataUpload.fxml& 

DataUploadController.java 

DataUpload.fxml is the GUI module (fxml 
file) that contains the GUI components, 

where data processing is controlled or 

visualized. DataUploadController.java is 

the controller class for DataUpload.fxml. 
This class uploads test data to database, 

which is then retrieved for job 

optimization. This class controls the main 
page for simulation and simulation 

configuration. It contains the layout 

containers for the simulation planner panel 

and graph panel, which are loaded using 
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Angela Caicedo’s Framework, to 

display the requested panel stored in 
the display container set. Figure 6 is the 

upload testdata interface develop for 

the application. 

 

 
 

FIGURE 6: UPLOAD DATA PAGE CONTEXT MODEL 

 

10. SimulationPage.fxml & 

SimulationPage.java 

SimulationPage.fxml are the 
GUI modules (fxml file) that 

contain the GUI components 

for visualization and the 
simulation of the unoptimized 

and optimized job 

assignments in the 
application. 

SimulationPageController.jav

a is the controller class for 

SimulationPage.fxml. 

 
4.3. Results and Discussion 
The genetic algorithm along with 

other optimization algorithms varies 

in performance at each test instance 

due to unpredictable and 
uncontrollable factors such as 

distance between the initial state and 

optimal state etc. Other factors that 
can alter the runtime are the 

complexity of the dataset as regards 

to defined constraint of the job 

assignment problem. For this reason, 

one case scenario is inputted to the 

system and optimized twice using a 
genetic algorithm before data is 

recorded, to test the robustness and 

flexibility of the adopted approach. 
Figure 7 shows the result of the first test 

after running multiple assignments. The 

tables on the right show how many times 

an optimal  
 

solution was found by each algorithm at 

every optimization iteration run. 

 
Figure 8 shows the result of the second test 

after running multiple assignments. The 

tables on the right show how many times an 

optimal solution was found by each 
algorithm at every optimization iteration run. 

 
Figure 9 shows the result of the third test after 

running multiple assignments. 
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Figure 10 shows the result of the fourth 
test after running multiple assignments. 

 
Figure 11 shows the result of the fifth test 

after running multiple assignments. 

 
Figure 12 shows the result of the sixth test 

after running multiple assignments. 

 

 

 

 
As observed from Figures 7 - 12 above, the 

graphs illustrate that the performance of 

genetic algorithm is better than the 

traditionally adopted Hungarian approach. 
After every iteration, the fitness value of the 

optimal solution at each optimization run of a 

given job assignment is recorded. After each 
job optimization run, the fittest value is 

ranked, and the fittest is believed to be the 

optimal solution for that job optimization 
iteration i.e., for 200 job assignments, 400 job 

assignments, etc.  The tables on the right 

show how many times an optimal solution 

was found by each algorithm at every 
optimization iteration run. E.g., Figure 7 -test 

iteration 1, the Hungarian algorithm did not 

find the optimal solution for 200 job 
assignments iteration, etc. Table 2 illustrates 

the performance of Genetic algorithm and the 

Hungarian algorithm 

To achieve this level of performance by 
genetic algorithm, the crossover parameters 

and mutation parameters were optimally 

configured after several test iterations. The 
values were slightly changed and observed 

for performance gain till no further 

performance gain could be reached.  

 

 
All in all, an exploratory examination 

into taking care of the Assignment 

problem utilizing Genetic Algorithm is 
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introduced. A scope of boundaries 

upsetting the algorithms is examined 
and their result in combination with 

the final optimum solution is been 

displayed. 
The Genetic algorithm is easier and 

faster than the famous Hungarian 

method and the concluding output of 

the proposed method is way better 
than the Hungarian method just as 

observed from the iterated results 

obtained. After the completion of 
each job optimization run, the fittest 

value is ranked, and the fittest among 

the fittest is believed to be the 

optimal solution for that job 
optimization iteration. 

 
TABLE 2: PERFORMANCE EVALUATION OF GA 

 Genetic algorithm vs. Hungarian 

Algorithm 

Flexibili

ty  

 

The Hungarian approach lacks consistency 

wherein it finds an optimal solution in a 

relatively shorter time than the genetic 

algorithm, and other times it's considerably 

slower than the genetic algorithm, making 

it inconsistent with random job 

assignments and not realistic for real-life 

application. 

Robustn

ess 

 

As observed in the test result images above, 

the genetic algorithm scaled uniformly as 

job assignment counts increased. This 

uniformity shows that Genetic Algorithm is 

more robust for real-life applications. 

Optimali

ty 

 

In the right column of the test result images, 

it can be observed that both instances of the 

genetic algorithm optimizations 

established the optimal solution more 

frequently than the Hungarian algorithm. 

Speed   The Genetic Algorithm finds the optimal   

solution more frequently than the Hungarian  

Algorithm, observing the average result of  

the six test images above, it can be concluded  

that the genetic algorithm is relatively faster  

than the Hungarian approach. 

 

 
5.0 Conclusion 

Developing genetic algorithms and defining 

parameters for optimal performance is a big 
challenge. The PMX (Partial Mapping 

Crossover) genetic algorithm is superior to 

the standard Hungarian algorithm for work 
planning problems. 

This performance is attributed to the crossing 

and mutation parameters used in the PMX 

algorithm. PMX divides each generation into 
four categories, grouped in ascending order. 

In each group, the best is used for cross 

mutations to ensure that the genetic algorithm 
avoids maximum local problems. This 

approach ensures that the genetic algorithm 

gets the best plan for the assignment problem. 

The algorithm is implemented in Java, which 
uses fork and join APIs for parallel 

processing, thereby increasing processing 

speed. It works because task scheduling can 
be modeled as a problem of division and 

conquest on genetic algorithms. 

 
This article presents a genetic algorithm and 

applies it to work scheduling problems with 

dynamic constraints. As a result, two 

examples of the genetic algorithm were 
compared, and one of them was widely used 

in the new Hungarian method for work 

assignment problems. The results show that 
genetic algorithm is a better method for 

practical applications due to the dynamic 

constraints of speed, optimality, flexibility, 
and scalability. According to the results 

observed in Figures 7 -12, when there are 

fewer assignments (<200 assignments), the 

Hungarian algorithm and the PMX genetic 
algorithm are relatively good, but when there 

are more assignments (> 200) 600 works), the 

performance of the PMX genetic algorithm is 
better than that of the Hungarian algorithm. 

The results sometimes show spikes due to the 

complexity of software generated task 

assignments. This complexity is a 
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chromosome of initial solution generated 

in the form of a calendar, with a very low 
fitness value, which converges towards 

optimal results only near the stopping 

condition. 
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