
Yinka-Banjo et al. CJICT (2020) 8(2) 1-17

1

Covenant Journal of Informatics & Communication Technology. Vol. 8 No. 2,December 2020

ISSN: print 2354 – 3566 electronics 2354 – 3507 DOI:

An Open Access Journal Available Online

Application of Genetic Algorithm to The Job Assignment

Problem with Dynamics Constraints

Chika Yinka-Banjo1, Ajao Kamal Abayomi1, Precious Ifeanyi Ohalete2

1 University of Lagos, Akoka, Nigeria
2 Alex Ekwueme Federal University, Ndufu-Alike, Nigeria

 cyinkabanjo@unilag.edu.ng, kamalajao@gmail.com, ohaleteprecious@gmail.com

Received: 10.08.2020 Accepted: 30.09.2020

 Date of Publication: December 2020

Abstract—The process of giving out an assignment to an individual that results to

delay, or non-performance of the job is from the cause of not evaluating the

minimum cost of the work and the right person to perform the assignment.

Assignment problem entails assigning a precise person or thing to an exact task or

job. The optimal result is to assign one person to one job. The most common method

to solve assignment problem is the Hungarian method. In this paper, Genetic

Algorithm is applied to solve assignment problems to attain an optimal solution. The

“N men – N jobs” issue is the core task issue, where the general expense of tasks is

limited as a result of allocating a single job to just an individual. In deciphering this

issue, Genetic Algorithm (GA) and Partially Matched Crossover (PMX) are been

utilized as an exceptional encoding plan. GA was evaluated alongside the Hungarian

method and the results clearly showed that it performed better than the Hungarian

method.

Keywords/Index Terms—Assignment problem, Branch and Bound Technique,

Constraints, Genetic Algorithm, Hungarian assignment method.

mailto:cyinkabanjo@unilag.edu.ng

Yinka-Banjo et al. CJICT (2020) 8(2) 1-17

2

1. Introduction

Organizations in modern-day businesses

have a greater need to handle their

activities efficiently to pull off
competitive advantages in every part of

the organization. To attain this, jobs need

to be assigned to the best-qualified

personnel.

Successful organization is an engine; the
work parts are simply unsuccessful if they

do not fit exactly where they are put.

Likewise, putting the wrong people in
mission-critical positions can be

expensive and counterproductive to

business performance and organizational

development. Maintaining and improving
the efficiency and effectiveness of your

employees are important to any business'

growth and success, hence the
justification for solving the problem of

assignments (Elsayed et al., 2010). The

Optimization of jobs provides call

recording tools, agent assessment, and
coaching, performance management,

planning and scheduling, contact

tracking, and feedback surveys. These
technologies are implemented in

applications that allow companies to

leverage customer interaction data to
increase efficiency, improve sales efforts,

and ultimately improve customer

experience. Workforce optimization

helps companies to improve the
efficiency and efficacy of their customer

interactions by collecting interactions

across all platforms, extracting lessons,
and taking decisions that affect business

outcomes and customer experience.

(Naveh, et al. 2007). In every
organization, Human resources seem to

be the bedrock, as its involvement in

operations, such as agents in client care,

clinical delegates in visiting doctors,

producing laborers, contact focus faculty in
client cooperation, aircraft group in client

assistance, explicit heads, and so forth.

Efficiently controlled employees eventually
contribute to the organization's efficiency,

and thus effectiveness. Workforce

application intends to cover the workload

with the available resources while respecting
work constraints, balancing the workload

among employees, and minimizing dormant

time. Significant benefits are being provided
in enhanced workplace management and

preparation, such as increased efficiencies,

reduced costs, enhanced customer service,

and greater employee satisfaction, (Naveh, et
al. 2007).

In linear programming, issues of

assignment are distinct as delegated
persons are obliged to carry out

assignments. The assignees, for

example, could be workers who should
dole out work tasks. In assigning jobs,

the major and standard issue is the

allocation of jobs to individuals. To fit

the meaning of a task issue, these sorts
of utilizations should be defined in a way

that meets the accompanying

assumptions.
a. Assigned individuals and quantity of

tasks are respectively indistinguishable.

(n indicates such numbers)
b. One mission assignment to exactly

one assignee.

c. One assignee shall complete one

assignment.
d. Costs are aligned with assignee i (i= 1,

2, 2,.,n) executing function j (j= 1, 2,., n).

e. The goal is to decide how all n tasks
should be carried out to reduce the total

cost.

In this work we applied GA to job

assignment problem with constraints. In

Yinka-Banjo et al. CJICT (2020) 8(2) 1-17

3

what follows, Section 2 talks about

some related literature. Section 3
explains the methods and algorithms

adapted in this work. Section 4 shows

the results tested in different case
scenarios simulated and real

environments. Section 5 concludes

the study.

2. Literature Review

Garrett et al (2005) showcased the

Genetic Algorithm (GA) towards
overcoming the Sailor Assignment

Problem (SAP) for the United States

Navy. The SAP is a mind-boggling
issue of assignment where every one

of the n sailors must be allotted one

task from an assortment of m

employees.

The genetic algorithm adopted for the

study is been connected to an existing

algorithm, the Gale-Shapley algorithm, in
building such assignments and giving

observational outcomes indicated that the

GA could create great arrangements with
huge cost savings In Anwar (2017) the

Hungarian algorithm was built

specifically on using a graph in the

general method. The approach was
attained by selecting the minimum cost

(edge) from the cost (edges) and

eliminating the chosen edge as well as the
edge-related nodes, then deleting all other

node-related edges. The edges are the

outflow of assigning people to jobs, the

roles and entities are the nodes. A
Constructive Genetic Algorithm (CGA)

to the problem of genetic selection was

presented in (Lorena et al., 2002).
Compared with a conventional genetic

algorithm the CGA has several new

technologies. These include diverse
population sizes and an opportunity to use

heuristics. With seniority and task priority

restrictions (Caron et al., 1999) proposed a
solution to the work allocation issue where

seniority requirements allowed the approach

to be such that no unassigned person can be
given a job except the same or higher

seniority appointed individual is unassigned.

Priority requirements state that the

compromise must be such that no unassigned
job can be allocated without a position being

unassigned with the same or higher priority.

Bogomolnaia and Moulin (2001) found a
situation where all actors have specific

expectations and suggested the method of

Probabilistic Serial (PS). They describe a

new notion of output, named ordinal
performance, and show that the probabilistic

serial process considers a normally effective

assignment free from envy. However, their
algorithm is crucial to the limiting

expectation of specific expectations. The

method used by the author was based on a
reinterpretation of the PS system as an

iterative algorithm for computing a flow in a

related network. It was shown that seeking a

random assignment that is both normally
effective and envy-free is unlikely for even a

poor strategy evidence mechanism on the

maximum choice domain.
Semih et al., (2008) applied the distribution-

type warehouse assignment question where

different types of goods were acquired from
various vendors for storage in the warehouse

for a specified period and allotment to

different clients. Their analysis aimed to

develop a layout of multi-level warehouse
shelves that reduces the annual cost of

transportation. Since the original

mathematical model proved to be NP-hard, a
Particle Swarm Optimization Algorithm

(PSO) was developed as a novel heuristic to

decide the optimal configuration.

GA has been applied in measuring future

Yinka-Banjo et al. CJICT (2020) 8(2) 1-17

4

progress in economy and market by

refining the rules-lists constructed for
fuzzy logic control after the removal of

inherent redundancy (Alfa et al., 2019 &

2020).
A variant of GA with selection and

evaluation was implemented for a

timetable scheduling problem by

replacing crossover and mutation using
tabu search memory and course

sandwiching (Abayomi-Alli et al., 2020).

2.1 Genetic Algorithm (GA)

is a heuristic, natural evolution-inspired

search, and optimization strategy

(McCall, J. 2005). It was first conceived
by John Holland and later developed by

numerous researchers. Optimization or

solution-searching is a heuristic technique
of GA, at first propelled by the Darwinian

hypothesis of development by (genetic)

preference. Theoretical interpretation of

the evolutionary cycle is used by GA in
creating an answer to issues. Every GA

works on artificial chromosomal groups.

On each population (generation) of
chromosomes (individual solution)

generated, three operations are

performed:
a) Reproduction: In this process,

individual strings are been

matched their fitness functions

respectively (Total cost
function is assumed here).

b) Crossover: This is the

mechanism of switching the
two-string material at some

point(s) with a chance through

several chromosomes.
c) Mutation: This is the flipping

component of the enthusiasm

inside a chromosome at a

specific area in an arrangement
with a low (Sahu & Tapadar,

2007).

With a start-up of a chromosome sample
which is randomly generated, a wellness-

based selection and recombination cycle

performed by the GA to make the following
cluster, a replacement/successor group. In the

cause of recombination, parent chromosomes

are chosen, and the obtained genetic material

is recombined towards the build-up of the
youngster’s chromosome. These will at that

point move into the public of the

replacements. A progression of progressive
ages develops as this cycle is iterated, and the

absolute strength of the chromosomes will in

general increase until some stop prerequisite

is met.
This selection process guarantees

compatibility of the system with the

darwinian survival of the fittest in the natural
world, by transferring a

higher portion of the best-suited genes

to the next generation
 (Sahu & Tapadar, 2007).

2.2 Genetic Algorithm Crossover

Variants
The Job assignment problem is likewise

a Constraint Optimization Problem

(COP) given the task of machines or
occupations dependent on status, skill

level, availability, etc. as mentioned in

the introduction of this study. There are

several variants of the GA that are
applied to different COP. Blend Fusion

(BLX-α), Simulated binary crossover

(SBX), Simplex Crossover (SPX),
Parent Centric Crossover (PCX),

Triangular Crossover (TC), and Partially

Matched Crossover (PMX) are instances
of GA variations. These variations

chiefly contrast in their utilization of

crossover operators and mutation

operators. (Elsayed et al., 2010)

Yinka-Banjo et al. CJICT (2020) 8(2) 1-17

5

3.0: Methodology

The purpose of this study is to apply
Genetic Algorithm Optimization to

work assignment question N workers

on M computers, where N is the
number of jobs allocated, and M is

the number of staff. This study will

use Ikeja Electric Distribution

company based in Lagos as case
study, create a mathematical model

and adopt an objective optimization

algorithm to obtain optimal job
assignments. The methodology

adopted is the bottom-up approach to

increment development. This kind of

application commences with an
architectural program design.

Bottom-up implementation begins

with the system's lowest-level
components. The method of a job

assignment is represented as a series

of strings corresponding to each

the base 10 value of the bit representation

of that row e.g.

<4 2 1> = <1 0 0, 0 1 0, 0 0 1>; where
each row is separated by a comma. Each

permutation of a given string is a valid

solution therefore, contains the best
solution. Given this encoding scheme

generates N! strings where N is the

number of alleles in a chromosome, it is
correct to assume that each solution

corresponds to a character encoding. The

implementation from bottom-up begins

with components that use everything else
but use nothing on its own. Firstly, a

testbed for each component is built and

secondly components are grouped into
subsystems after having been evaluated

equally when the lowest level

components have been tested using a

testbed. The process continues until the

entire system is fully completed and then

checked as a whole.

3.1 Job Assignment Problem

Given N computers and N people.

Mathematical representation, with the
following symbols, can be used to

describe it:

i →row number denoting ith man i ε [1, N]
j →column number denoting jth machine j ε

[1, N]

Where [1, N] is an infinite set of natural
numbers

C[i][j]→ cost of assigning jth machine to ith

man

X[i][j] = 1 if jth machine is assigned to ith
man = 0 otherwise

i.e. on the job assignment matrix if jth

machine is assigned to ith man, the
element that corresponds to the ith row

and jth column = 1, else it will = 0.

The question can be posed as follows:

 Minimize the total cost function

 Subject to the following constraints:

This indicates that the ith man for all

instances of (1..N) (natural numbers), there

must be a jth machine for all (1…N) on the

job assignment matrix.

3.2 Job Genetic Algorithm approach

1. After encoding the solution strings, the

“Binary tournament selection” method is

Yinka-Banjo et al. CJICT (2020) 8(2) 1-17

6

1 3 4 2 5

↕ ↕

2 1 3 5 4

FIGURE 1: PMX CROSSOVER

adopted for population crossover

selection.
2. In the binary tournament selection, two

strings are selected and compared

randomly, the optimal one chosen for
parenthood is replicated M times.

Where M is the population size.

3. Then the Partially Matched Crossover

(PMX) is employed for crossover,
which can be better explained by the

following example. Two strings are

chosen for crossover <1 3 4 2 5> and
<2 1 3 5 4>. Arbitrarily, two numbers

(positions) among 1 and L are created

where L is the length of the string, here

L=5. The swath of genetic material
(alleles between two points on the

chromosomes) from one string, and

the corresponding swath from another
string, between the selected

boundaries of the chromosome, are

interchanged such that
 3 ↔ 1 4 ↔3 2 ↔ 5, which

implies1↔4 and 2↔5 as shown in

Figure 1.

 On the off chance that 1 in the part

outside the two-hybrid focuses is

subbed by 4 and 2 in the segment
above, 5 will remove the two

crossover points. Switching the

alleles outside the selected
boundaries of the two strings

ensures the strings produced by the

PMX crossover are valid.

 In Figure 2, the PMX crossover

approach adopted ensures that crossover

generated strings are valid possible
combinations of < 1 2 3 4 5 >.

4. After mixing, a population exists that
contains the parent population and

children population. The fittest

individuals are selected from this

generation for the next iteration.

Two methods could be used for the selection

process:

a. A method is devised, which orders
each individual in this population in

ascending performance order

(objective function value), the string

encoding the lowest total assignment
expense will have the maximum

objective function

benefit. A fixed number of individual
strings can be picked from this

population under each group, in

which each population can be split
into 4. For instance, it is assumed

that the string values are normally

distributed with a mean value of μ

and a standard deviation of μ, and
then the population could be

classified into four categories: those

with average values above -μ + 3*π,
those with average values between μ

+ 3*μ and μ, those with values

between μ and μ-3*π, then those with
values above average. Those below

average have values

 below μ — 3*ÿ. In this way the ethnic

composition is preserved.
b. One way of choosing the

Yinka-Banjo et al. CJICT (2020) 8(2) 1-17

7

population is to store the string

with the best objective
function value individually in

an array at each iteration, and

then equate iteration with the
best string of the population.

The strongest string cannot

avoid this path. The GA has a

drawback of converging to a
local equilibrium i.e., a

premature convergence that

contributes to a successful but
not the best solution. The

solution adopted to minimize

this weakness is to maximize

the population size at each
iteration and to maintain a

demographic diversity at each

iteration.
5. A mutation alternative,

Inversion, is then

implemented which selects
two random spots in a string

and flips the corresponding

values at that location.

3.3 Job Functional Requirement

 The real essence of a design definition is

the practical specifications of the
functionalities of the framework that

satisfies the requirements specification of

this project. This is done by going through

the applications functionality as specified
in its specification. For each requirement,

a more generic function had to be

specified that could implement these
functionalities. These requirements can

also specify what the developing system

should not do.
1. Valid Dataset

 This is a user requirement which

requires that the dataset uploaded to the

optimizer is compatible with the problem
set and conforms with the scope of this

study, which is the activities of staffs in

the ICT unit at Ikeja Electric Distribution
Company whose branches are located in

Lagos. This implies that the dataset would

contain schedules of possible activities

executable by these ICT staff, organized
by time stamps and expected duration of

executions.

2. Simulation Manager
 This system requirement ensures that the

system simulates the efficiency of a given

dataset, either optimized or unoptimized.

Each simulation is timed, allowing the
tester to benchmark the dataset through

visual inspection of the animation during

simulation.
3. Optimization Visualizer

This system requirement visualizes on a

line graph the comparison between
multiple solution iteration using Key

Point Indicators (KPIs) such as the fittest

individual in every generation and

population size at each iteration (i.e.
alternated to escape local optima).

4. Job Assignment Optimization

This system requirement employs the
adopted GA algorithm to optimize the

inputted dataset. This optimizer

minimizes the objective function of the
job assignment problem as defined in this

study constrained by the intrinsic priority

of a task, skill-level, staff’s performance

on that job, location from task, and staff’s
current workload. Figure 3 show as

explained.

Yinka-Banjo et al. CJICT (2020) 8(2) 1-17

8

Figure 4 shows the activities on how a

tester of this system interacts with the
developed system.

3.4 System Design

This section introduces system models
that show with a varying degree of

abstraction, different perspective of this

system used to design the developing
system.

3.4.1 Context Model

The design model in Figure 5 is used to

illustrate device integration with an
external perspective of the framework and

its environment. This model helps to

reflect the system's borders and its setting.
Such boundaries could be established to

accommodate technological as well as

non-technical considerations such as

social and organizational issues. After the
boundaries have been ascertained, the

research done will attempt to determine the
nature of that modelled sense and the

dependencies the device has on its setting.
1. Job Assignment Manager manages the

job assignment list while considering
other constraints such as seniority

constraint, staff availability constraint,

job role constraint, skill-level
constraint etc.

2. Job Scheduler converts the

information uploaded via dataset to
various job assignments on the job list

of different ICT staff on the system.

3. GA Job Scheduling Optimizer

employs the GA strategy adopted in
this study to minimize the objective

function of the job assignment

problem as defined in this study. It
operates on the

FIGURE 3: JOB OPTIMIZATION SYSTEM

CONTEXT MODEL

Yinka-Banjo et al. CJICT (2020) 8(2) 1-17

9

` uploaded dataset to generate

an optimal job assignment that

will be executed by every staff
of the ICT unit in the shortest

time.

4. Assignable Task List

Manager enforces the job role
constraint, ensuring that staff

in the simulation system only

undertake jobs that are
assigned to them. This

subsystem stores the list of

assignable jobs as it concerns

each job role captured on this
system.

5. Dataset Uploader/Validator

enables the system tester

upload dataset for optimization.

This system component analyses
the

uploaded dataset to ascertain its
validity and its conformity to the

various job assignment constraints as

defined in this system such as

operational hours,
job assignments based on job roles,

etc. The uploader formats the contents

of a dataset to extract assignable jobs,
jobs to be done, owner of a job, subject

of a job, object of a job, which is

stored on database before processing.

6. Simulation Manager simulates the
performance of a job assignment,

optimized or unoptimized. It enables

the tester to visualize in real-time
through animations, the pseudo

execution of operations as defined in

each job assignment.
7. Optimization Visualizer shows the

results of the optimization process as

adopted in this project. It uses a line

graph to visualize the performance of
the adopted algorithm under multiple

test scenarios.

3.4 Process Model
In accordance with the background model,

the System model in Figure 5 is used to

describe human and automatic systems in
which each software program is used. The

aim of this diagram is to display the actions

that form a machine process and transfer of

control from one operation to another. A
filled circle indicates the start of a process,

the end of a filled circle inside another Circle.

Round-cornered rectangles represent
activities, that is, the specific sub-processes

that need to be performed. The operation

diagram can include artifacts to show various

systems that are used to support different

FIGURE 5: JOB OPTIMIZATION SYSTEM

 ACTIVITY MODEL CONTEXT MODEL

Yinka-Banjo et al. CJICT (2020) 8(2) 1-17

10

processes.

4.0 Test Case Scenario

This project focuses on the power

distribution sector and the activities of the
IT department as a service department to

the other personnels and departments in

the company scattered across seven
business units in Lagos State. These units

are used as test cases for simulation and

test for efficiency of the genetic algorithm
in relation to the job assignment problem.

The algorithm would work on pseudo-

data, built based on the job functions

performed by each specialist, and
benchmarked using the following

parameters: Flexibility, Robustness,

Optimality, Speed.
To enable proper analysis of data captured

despite variability, the optimization

process is simulated several times and

recorded. Each run will contain 5
iterations corresponding to 200, 400, 600,

800 and 1000 job assignments. Each

assignment is randomized to create a
more realistic scenario.

The Hungarian algorithm and its variants

are known as the most adopted approach
for tackling the job assignment problem.

The Hungarian algorithm is used to

benchmark the adopted algorithm.

4.1 Data Dictionary
This section describes the test dataset for

the job optimization problem as it

concerns operations of staff in the IT
department, as the technical support for

other departments, maintaining sectors

operations as it concerns IT infrastructure
such as networking infrastructure, PCs,

revolving doors, electronics and building

electrical infrastructure. Table 1 shows a

few samples of the job objects, job roles
and job names as stored on the database

defined in the analysis and design section of

this project. Job objects - items around which
a job is to be performed/object of the job

execution e.g., network router, mouse,

keyboard etc. These objects could be attached
to a defining noun such as person or place

e.g., Henry’s mouse, Ayo desktop monitor

etc.

Job roles – a grouping of staff based on
department and their specialized.

Job names – name of each performable job of

an IT staff of Access bank as captured by the
system.

Table 1 represents the core data, not the entire

data captured on the test dataset, which also

includes username, branch name, branch
location, skill-level etc.

TABLE 1 DATA DICTIONARY

Job Role Job Object Job Name

Network

Technician

Main Hall

Router,

Customer

Service Hall

Router, Network

Cable

Fix the router in the

customer hall.

We can’t get internet

at our office (Audit).

My computer cannot

access the network.

IT

Technician

Revolving door,

AC, Socket,

faulty wire

The left revolving

door at branch A is

temporarily out of

service.

The socket at my

station is faulty.

IT Support Internet

connection,

Computer

I can’t login to my

window’s account.

My computer is not

coming on.

Software

Support

CIS App,

Mobile App

I can’t login Meter

reading software.

I can’t balance my

sheets for today.

Job names as mentioned above accounts for

the fact that job assigners on this system are

not IT savvy (not familiar with IT terms), as
is the case in many organizations, therefore,

adopting a natural vocabulary instead of

technical vocabulary. Job names are

dynamically bound to the job assigner’s
location and username, therefore, the system

Yinka-Banjo et al. CJICT (2020) 8(2) 1-17

11

can permit the use of pronouns such as I,

my, our, us etc., to make the job
assignment name which makes it more

natural.

4.2 Sample Input/Output/Results

Development of a JavaFX

Application using Scene Builder for

GUI, allowed the application user

interface to be developed first. The

components of the user interface

determine how each aspect of the

project object and scope is achieved.

After the user interface was

developed using scene builder, then

different logic for manipulation of

information within each component

of the application where

implemented in their controller

classes.

JavaFX is the new object-oriented

framework for developing Java GUI

programs. Every JavaFx application

must extend the abstract

javafx.application. .Application

class, which defines the essential

framework for writing JavaFx

programs. Each JavaFx application

must have a static launch method, a

static main method, start method, a

scene and a stage. The launch method

defined in the Application class is

used to launch stand-alone JavaFX

applications. The main method is a

method defined in the Object class

which is inherited by every Java

application. The main is method

called when a java application is

executed. The start method also defined

in the Application class, and must be

overridden by its concrete subclass.

A solution was to adopt a framework that

is capable of seamlessly loading and

displaying a desired layout container

from a set of layout containers loaded. It

copies the root layout container of the

requested Scene to the displaying window.

This framework uses a hash-function to map

an identifier as key and the layout container

as the object. This framework is an imitation

of the framework developed by a Java

Evangelist at Oracle, Angela Caicedo.

Every GUI feature has its own window (a file

with an extension of.fxml) and controller (a

file with an extension of.java). FXML is an

XML extension used to create a markup

language to manage the layout of a web

development JavaFx Framework, associated

with HTML. Controller groups manage user

activities including events caused by the

mouse, key events triggered etc.. In the

corresponding parts the GUI components and

their controller groups would be described.

4.2.1 Inputs

This portion explains the application
software built for this project and how it

meets the purpose of the project, in effect the

core components and inputs gathering
knowledge through the operator's contact

with the simulation device. Below is a

description of GUI Components and their set
of controllers: DBConnect.java, GA.java,

HA.java, Jobs.java

Vertex.Java, WeightedEdge.java,

Graph.java, Project.Java, DataUpload.fxml
& DataUploadController.java,

Yinka-Banjo et al. CJICT (2020) 8(2) 1-17

12

SimulationPage.fxml &

SimulationPage.java
1. DBConnect.java class is the

communication module between

the system and the database.
2. GA.java class implements the GA

modeled for the optimization of the

job assignment problem. This class

contains a mutation operator
(inversion), fitness evaluator for

local and global best, and

configurable crossover possibility
to adjust the efficiency of the

algorithm.

3. HA.java implements the popularly

adopted Hungarian Algorithm
used to benchmark the

performance of the GA adopted for

this project. During testing, the
same values passed to the Genetic

Algorithm is passed to the

Hungarian Algorithm to ensure the
benchmark results are accurate.

4. Jobs.java class models the single

core entity of this project. It stores

other variables that describe it
properly such as job assigner

username, job name, job object,

time of assignment etc. This object
is instantiated when the test data

uploaded to database is retrieved.

This object is randomized for each
test run to simulate the randomness

of job assignment in real-life

scenarios.

5. Vertex.java class models the java
object that represents a node on a

graph. These nodes represent the

bank branches. The coordinate
location of each node is

preconfigured before program

execution to model the location.

6. WeightedEdge.java class models

the rail lines between way stations.

The weight of each edge represents the
distance between any two branches

and distance between stations. it is

represented on the program as a
weighted edge with a cost, calculated

by the system on execution as a

straight line between two points.

7. Graph.java class models the branches
of the bank as a connected unit that

interoperate, therefore, can have IT

staff shuttle several branches on job
assignments. The class models the

branches as undirected connected

graphs of the transportation network

between branches of the bank. After
the system has optimized the uploaded

job assignments, the new scheduling

and routing algorithm is simulated on
the graph object and displayed on the

simulation page.

8. Project.java class is the main class for
this project’s application. It contains

the main method, start method, Stage

object, scene object and the launch

method required to execute the
JavaFX application. In this class all

layout containers are loaded and the

display container set.
9. DataUpload.fxml&

DataUploadController.java

DataUpload.fxml is the GUI module (fxml
file) that contains the GUI components,

where data processing is controlled or

visualized. DataUploadController.java is

the controller class for DataUpload.fxml.
This class uploads test data to database,

which is then retrieved for job

optimization. This class controls the main
page for simulation and simulation

configuration. It contains the layout

containers for the simulation planner panel

and graph panel, which are loaded using

Yinka-Banjo et al. CJICT (2020) 8(2) 1-17

13

Angela Caicedo’s Framework, to

display the requested panel stored in
the display container set. Figure 6 is the

upload testdata interface develop for

the application.

FIGURE 6: UPLOAD DATA PAGE CONTEXT MODEL

10. SimulationPage.fxml &

SimulationPage.java

SimulationPage.fxml are the
GUI modules (fxml file) that

contain the GUI components

for visualization and the
simulation of the unoptimized

and optimized job

assignments in the
application.

SimulationPageController.jav

a is the controller class for

SimulationPage.fxml.

4.3. Results and Discussion
The genetic algorithm along with

other optimization algorithms varies

in performance at each test instance

due to unpredictable and
uncontrollable factors such as

distance between the initial state and

optimal state etc. Other factors that
can alter the runtime are the

complexity of the dataset as regards

to defined constraint of the job

assignment problem. For this reason,

one case scenario is inputted to the

system and optimized twice using a
genetic algorithm before data is

recorded, to test the robustness and

flexibility of the adopted approach.
Figure 7 shows the result of the first test

after running multiple assignments. The

tables on the right show how many times

an optimal

solution was found by each algorithm at

every optimization iteration run.

Figure 8 shows the result of the second test

after running multiple assignments. The

tables on the right show how many times an

optimal solution was found by each
algorithm at every optimization iteration run.

Figure 9 shows the result of the third test after

running multiple assignments.

Yinka-Banjo et al. CJICT (2020) 8(2) 1-17

14

Figure 10 shows the result of the fourth
test after running multiple assignments.

Figure 11 shows the result of the fifth test

after running multiple assignments.

Figure 12 shows the result of the sixth test

after running multiple assignments.

As observed from Figures 7 - 12 above, the

graphs illustrate that the performance of

genetic algorithm is better than the

traditionally adopted Hungarian approach.
After every iteration, the fitness value of the

optimal solution at each optimization run of a

given job assignment is recorded. After each
job optimization run, the fittest value is

ranked, and the fittest is believed to be the

optimal solution for that job optimization
iteration i.e., for 200 job assignments, 400 job

assignments, etc. The tables on the right

show how many times an optimal solution

was found by each algorithm at every
optimization iteration run. E.g., Figure 7 -test

iteration 1, the Hungarian algorithm did not

find the optimal solution for 200 job
assignments iteration, etc. Table 2 illustrates

the performance of Genetic algorithm and the

Hungarian algorithm

To achieve this level of performance by
genetic algorithm, the crossover parameters

and mutation parameters were optimally

configured after several test iterations. The
values were slightly changed and observed

for performance gain till no further

performance gain could be reached.

All in all, an exploratory examination

into taking care of the Assignment

problem utilizing Genetic Algorithm is

Yinka-Banjo et al. CJICT (2020) 8(2) 1-17

15

introduced. A scope of boundaries

upsetting the algorithms is examined
and their result in combination with

the final optimum solution is been

displayed.
The Genetic algorithm is easier and

faster than the famous Hungarian

method and the concluding output of

the proposed method is way better
than the Hungarian method just as

observed from the iterated results

obtained. After the completion of
each job optimization run, the fittest

value is ranked, and the fittest among

the fittest is believed to be the

optimal solution for that job
optimization iteration.

TABLE 2: PERFORMANCE EVALUATION OF GA

 Genetic algorithm vs. Hungarian

Algorithm

Flexibili

ty

The Hungarian approach lacks consistency

wherein it finds an optimal solution in a

relatively shorter time than the genetic

algorithm, and other times it's considerably

slower than the genetic algorithm, making

it inconsistent with random job

assignments and not realistic for real-life

application.

Robustn

ess

As observed in the test result images above,

the genetic algorithm scaled uniformly as

job assignment counts increased. This

uniformity shows that Genetic Algorithm is

more robust for real-life applications.

Optimali

ty

In the right column of the test result images,

it can be observed that both instances of the

genetic algorithm optimizations

established the optimal solution more

frequently than the Hungarian algorithm.

Speed The Genetic Algorithm finds the optimal

solution more frequently than the Hungarian

Algorithm, observing the average result of

the six test images above, it can be concluded

that the genetic algorithm is relatively faster

than the Hungarian approach.

5.0 Conclusion

Developing genetic algorithms and defining

parameters for optimal performance is a big
challenge. The PMX (Partial Mapping

Crossover) genetic algorithm is superior to

the standard Hungarian algorithm for work
planning problems.

This performance is attributed to the crossing

and mutation parameters used in the PMX

algorithm. PMX divides each generation into
four categories, grouped in ascending order.

In each group, the best is used for cross

mutations to ensure that the genetic algorithm
avoids maximum local problems. This

approach ensures that the genetic algorithm

gets the best plan for the assignment problem.

The algorithm is implemented in Java, which
uses fork and join APIs for parallel

processing, thereby increasing processing

speed. It works because task scheduling can
be modeled as a problem of division and

conquest on genetic algorithms.

This article presents a genetic algorithm and

applies it to work scheduling problems with

dynamic constraints. As a result, two

examples of the genetic algorithm were
compared, and one of them was widely used

in the new Hungarian method for work

assignment problems. The results show that
genetic algorithm is a better method for

practical applications due to the dynamic

constraints of speed, optimality, flexibility,
and scalability. According to the results

observed in Figures 7 -12, when there are

fewer assignments (<200 assignments), the

Hungarian algorithm and the PMX genetic
algorithm are relatively good, but when there

are more assignments (> 200) 600 works), the

performance of the PMX genetic algorithm is
better than that of the Hungarian algorithm.

The results sometimes show spikes due to the

complexity of software generated task

assignments. This complexity is a

Yinka-Banjo et al. CJICT (2020) 8(2) 1-17

16

chromosome of initial solution generated

in the form of a calendar, with a very low
fitness value, which converges towards

optimal results only near the stopping

condition.

References

Abayomi-Alli, A., Misra, S., Fernández-Sanz,

L., Abayomi-Alli, O., & Edun,

A.R.,(2020). Genetic Algorithm and

Tabu Search Memory with Course

Sandwiching (Gats_cs) for

University Examination
Timetabling, Intelligent Automation

and Soft Computing, 26(3), 385–396.

Alfa, A. A., Misra, S., Bumojo, A., Ahmed, K.

B., Oluranti, J., & Ahuja, R. (2019).

Comparative Analysis of

Optimisations of Antecedents and

Consequents of Fuzzy Inference

System Rules Lists Using Genetic

Algorithm Operations.

In International Conference on

Advances in Computational

Intelligence and Informatics. 373-
379.

 Alfa, A. A., Yusuf, I. O., Misra, S., & Ahuja,

R. (2020). Enhancing stock prices

forecasting system outputs through

genetic algorithms refinement of

rules-lists. In Proceedings of First

International Conference on

Computing, Communications, and

Cyber-Security. 669-680.

 Anwar N. J. (2017). A New Method to Solve

Assignment Models. Applied
Mathematical Sciences, 11(54),

2663 – 2670

Bogomolnaia, A., & Moulin, H. (2001). A

New Solution to the Random

Assignment Problem. Journal of

Economic theory, 100(2), 295-328.

Caron, G., Hansen, P., & Jaumard, B. (1999).

The Assignment Problem with

Seniority and Job Priority

Constraints. Operations

Research, 47(3), 449-453.

Chen, P. (1976). The Entity Relationship

Model—Towards a Unified View of

Data. ACM Trans. On Database

Systems, 1 (1), 9–36.

Douglas, B. (2005). Software Engineering for

Students: A Programming Approach,

Fourth Edition, Pearson Education,

United Kingdom.
Elsayed S. M., Sarker R.A., & Essam D.L.

(2010). A Comparative Study of

Different Variants of Genetic

Algorithms for Constrained

Optimization. In: Deb K. et al. (eds)

Simulated Evolution and Learning.

SEAL 2010. Lecture Notes in

Computer Science, 6457, 177-186

Garrett D, Vannucci J, Silva R, Dasgupta D &

Simien, J. (2005). Genetic Algorithms

for the Sailor Assignment Problem.
Proceedings of the 2005 Conference on

Genetic and Evolutionary Computation,

1921-1928.

Gavin, P. (2006). Beginning Database Design,

Wiley Publishing, Inc., Indianapolis.

Glover F, Gary A, & Kochenberger E,

(2003).Handbook of Metaheuristics,

Kluwer Academic Publishers New York,

Boston, Dordrecht, London, Moscow.

Goldberg, D.E., (1989), Genetic Algorithms in

Search, Optimization, and Machine

Learning. Reading, Mass.: Addison-
Wesley.

Hoffer J.A., Ramesh V., Topi H., (2011), Modern

Database Management, 10th Ed.,

Prentice Hall, New Jersey, pp. 61-63.

Jamaldeen F, (2019). Compare the structures of

commercial and Islamic banks Available

online at:,
https://www.dummies.com/personal-

finance/islamic-finance/compare-the-

structures-of-commercial-and-islamic-

banks. Accessed online on July 7, 2019.

Kirkpatrick S, Gelatt Jr. C.D. and Vecchi M.P.

(1983). Optimization by Simulated

Annealing, Science, 220, 671-680.

Yinka-Banjo et al. CJICT (2020) 8(2) 1-17

17

Lorena, L. A., Narciso, M. G., & Beasley, J. E.

(2002). A Constructive Genetic

Algorithm for the Generalized

Assignment Problem. Evolutionary

Optimization, 5, 1-19.

McCall, J. (2005). Genetic Algorithms for

Modelling and Optimisation. Journal

of Computational and Applied

Mathematics, 184(1), 205–222.

Naveh Y., Richter Y., Connors D., & Altshuler

Y. (2007). Workforce Optimization:

Identification and Assignment of

Professional Workers using Constraint

Programming, IBM Journal of

Research and Development, 51(3), 263

– 279.

Sahu A, Tapadar R, (2007). Solving the

Assignment Problem using Genetic

Algorithm and Simulated Annealing,

IAENG International Journal of

Applied Mathematics., 36(1), 1-7.

Stuart J. Russell and Peter Norvig, 1995,

Artificial Intelligence - A Modern

Approach, Prentice Hall, Englewood

Cliffs, New Jersey.

	1. Introduction
	2. Literature Review
	2.1 Genetic Algorithm (GA)
	2.2 Genetic Algorithm Crossover
	Variants
	3.0: Methodology
	3.1 Job Assignment Problem
	3.2 Job Genetic Algorithm approach
	3.3 Job Functional Requirement

